• Title/Summary/Keyword: Holocene sediment

Search Result 83, Processing Time 0.017 seconds

The Formation Mechanism and Distribution of Benthic Foraminiferal Assemblage in Continental Shelf of the northern East China Sea (북동중국해 대륙붕 저서성 유공충 군집 분포와 형성 기작)

  • Daun Jeong;Yeon Gyu Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.8-31
    • /
    • 2023
  • To understand the distribution and formation mechanism of benthic foraminiferal assemblages, grain size analysis, 14C radiocarbon dating, and benthic foraminifera analysis were conducted on thirty-two surface sediments collected from the continental shelf of the northern East China Sea, respectively. Surface sediment was composed of sandy mud~muddy sand facies with an average of 52.04% of sand, 13.72% of silt, and 34.20% of clay. These sedimentary facies are palimpsest sediment. Benthic foraminifera was classified into a total of 48 genera and 104 species, including agglutinated foraminifera, calcareous-hyaline, and calcareous-porcelaneous foraminifera. The production rate of agglutinated foraminifera increased toward the Yangtze River area while that of planktonic foraminifera increased toward Jeju Island. Dominant species are Ammonia ketienziensis, Bolivina robusta, Eggella advena, Eilohedra nipponica, Pseudorotalia gamardii, Pseudoparrella naraensis. 14C radiocarbon datings of Bolivina robusta and Pseudorotalia gamardii with the highest production rate were 2,360±40 yr B.P. and 2,450±40 yr B.P., respectively. In the result of cluster analysis, three assemblages composed of P. gaimardii, B. robusta, and A. ketienziensis-P. naraensis were classified broadly. P. gaimardii assemblage is thought to be formed from about 2.5 yr B.P. at the sea area of the Yangtze River to 50 m in water depth affected by fresh water. B. robusta assemblage is thought to be formed from about 2.4 yr B.P. at the sea area of Jeju Island to 50~100 m affected by offshore water. And then, A. ketienziensisP. naraensis assemblage was formed in the northwest sea area (Central Yellow Sea Mud). These distributions and composition of benthic foraminiferal assemblages formed from about 2.5 yr B.P. in the northern East China Sea are thought to be due to the change of benthic ecology environment that occurred by the sea level increase during the late Holocene.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF