• Title/Summary/Keyword: Hollow nanospheres

Search Result 13, Processing Time 0.028 seconds

Hollow Sb93Pt7 Nanospheres Prepared by Galvanic Displacement Reaction for a Highly Li Reactive Material

  • Kim, Hyun-Jung;Cho, Jae-Phil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.154-158
    • /
    • 2008
  • The synthesis of hollow ${Sb_93}{Pt_7}$ nanospheres smaller than 30 nm with a shell consisting of smaller nanoparticles, with an average particle size of ${\sim}$ 3 nm is reported. The formation of this alloy is driven by galvanic replacement reaction involving Sb nanoparticles and ${H_2}{PtCl_6} $ without need for any additional reductants. Further, the reaction proceeds selectively as long as the redox potential between two metals is favorable. The capacities of the hollow samples are 669 and 587mAh/g at rates of 1 and 7C, respectively, while those values for the nanoparticles are 647 and 480mAh/g at rates of 1, 7C, respectively. This result shows the significantly improved capacity retention of the hollow sample at higher C rates, indicating that high surface area of the hollow nanospheres makes the current density more effective than that for the solid counterpart.

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

Incorporation of Manganese Oxide Nanoparticles Into Polyaniline Hollow Nanospheres and Its Application to Supercapacitors

  • Kwon, Hyemin;Ryu, Ilhwan;Han, Jiyoung;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.295-295
    • /
    • 2013
  • Supercapacitors with higher energy and power density are attracting growing attention for their wide range of potential applications such as portable electronic equipments, hybrid vehicle and cellular devices. In various classes of materials for supercapacitors, the redox pseudocapacitive materials such as conducting polymers and metal oxides have been most widely studied recently. The nanostructuring of the electrode surface has also been focused on since it can provide large surface area and consequently easy diffusion of ions in the capacitors. Among the active materials, in this work, we have used polyaniline (PANi) and manganese oxide ($MnO_2$). PANi is one of the promising electrode and active materials due to its desirable properties such as high electrochemical activity, high doping level and stability. $MnO_2$ is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. In this work, we fabricated PANi hollow nanospheres by polymerizing aniline monomers on the polystyrene (PS) nanospheres and then dissolving the inner PS spheres. This nanostructuring of the PANi surface can provide large surface area and hence easy diffusion of electrolyte ions. We also incorporated $MnO_2$ nanoparticles into the PANi hollow nanospheres and investigated its electrochemical properties. It is expected that the combination of these two active materials with slightly different working potential windows show synergetic effects such as broader working potential range and enhanced specific capacitance.

  • PDF

Novel Method to Confine Manganese Oxide Nanoparticles in Polyaniline Hollow Nanospheres and Its Supercapacitive Properties

  • Kwon, Hyemin;Lee, Jinho;Munkhbaatar, Naranchimeg;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.196.2-196.2
    • /
    • 2014
  • Nanostructuring the electrode surface is an emerging technology to improve the performance of supercapacitors since it can facilitate charge transfer, ion diffusion and electron propagation during electrochemical process. Fabrication of the electrode consisting of two or more materials together has also been focused on since it can provide synergetic effect such as broader working potential range and enhanced capacitance. In this work, we have used polyaniline (PANi) and manganese oxide (MnO2) as electrode materials. PANi is one of the promising electrode materials due to its high electrochemical activity, high doping level and stability. MnO2 is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. Firstly, we synthesized polystyrene nanospheres on MnO2 nanoparticles. MnO2-incorporated PANi hollow nanospheres were then fabricated by polymerizing aniline monomers on these PS nanospheres and dissolving the inner PS spheres. The surface morphology, electronic absorption and electrical conductivity of the electrode were analyzed using field-emission scanning electron microscope (FE-SEM), UV-visible spectrometer, and sheet resistivity meter, respectively. The electrochemical properties such as capacitance of the supercapacitors were also estimated using cyclic voltammetry.

  • PDF

Binary transition metal sulfides hierarchical multi-shelled hollow nanospheres with enhanced energy storage performance (향상된 에너지 저장 능력을 가진 이중 전이금속 황화물 계층적 중공 구조의 나노구)

  • Lee, Young Hun;Choi, Hyung Wook;Kim, Min Seob;Jeong, Dong In;Tiruneh, Sintayehu Nibret;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2018
  • The metal alkoxide, CuCo-glycerate nanospheres (NSs), were successfully synthesized as Cu-Co bimetallic sulfides hierarchical multi-shelled hollow nanospheres ($CuCo_2S_4$ HMHNSs) through solvothermal synthesis. In this reaction mechanism, the solvothermal temperature and the amount of glycerol as a cosurfactant play significant role to optimize the morphology of CuCo-glycerate NSs. Furthermore, $CuCo_2S_4$ HMHNSs were obtained under optimized sulfurization reaction time of 10 h via anion exchange reaction between glycerate and sulfur ions. Finally, the structural and chemical compositions of CuCo-glycerate NSs and $CuCo_2S_4$ HMHNSs were confirmed through field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and electrochemical performances.

Fabrication of Three-Dimensionally Arrayed Polyaniline Nanostructures

  • Gwon, Hye-Min;Ryu, Il-Hwan;Han, Ji-Yeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.220-220
    • /
    • 2012
  • The supercapacitors with extraordinarily high capability for energy storage are attracting growing attention for their potential applications in portable electronic equipments, hybrid vehicles, cellular devices, and so on. The nanostructuring of the electrode surface can provide large surface area and consequently easy diffusion of ions in the capacitors. In addition, compared to two-dimensional nanostructures, the three-dimensional (3D) nano-architecture is expected to lead to significant enhancement of mechanical and electrical properties such as capacitance per unit area of the electrode. Polyaniline (PANi) is known as promising electrode material for supercapacitors due to its desirable properties such as high electro activity, high doping level and environmental stability. In this context, we fabricated well-ordered 3D PANi nanostructures on 3D polystyrene (PS) nanospheres which was arrayed by layer-by-layer stacking method. The height of the PANi nanostructures could be controlled by the number of PS layers stacked. 3D PANi hollow nanospheres were also fabricated by dissolving inner PS nanospheres, which resulted in further enhancement of the surface area and capacitance of the electrode.

  • PDF

Fabrication of Uniform Hollow Silica Nanospheres using a Cationic Polystyrene Core

  • Yun, Dong-Shin;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1534-1538
    • /
    • 2011
  • Uniform, hollow nanosilica spheres were prepared by the chemical coating of cationic polystyrene (cPS) with tetraethylorthosilicate (TEOS), followed by calcination at 600 $^{\circ}C$ under air. cPS was synthesized by surfactant-free emulsion polymerization using 2,2'-azobis (2-methyl propionamidine) dihydrochloride as the cationic initiator, and poly(vinyl pyrrolidone) as a stabilizer. The resulting cPS spheres were 280 nm in diameter, and showed monodispersion. After coating, the hollow silica product was spherically shaped, and 330 nm in diameter, with a narrow distribution of sizes. Dispersion was uniform. Wall thickness was 25 nm, and surface area was 96.4 $m^2/g$, as determined by BET. The uniformity of the wall thickness was strongly dependent upon the cPS surface charge. The effects of TEOS and ammonia concentrations on shape, size, wall thickness, and surface roughness of hollow $SiO_2$ spheres were investigated. We observed that the wall thicknesses of hollow $SiO_2$ spheres increased and that silica size was simultaneously enhanced with increases in TEOS concentrations. When ammonia concentrations were increased, the irregularity of rough surfaces and aggregation of spherical particles were more severe because higher concentrations of ammonia result in faster hydrolysis and condensation of TEOS. These changes caused the silica to grow faster, resulting in hollow $SiO_2$ spheres with irregular, rough surfaces.

Discrimination of Gasoline and Diesel Fuels Using Oxide Semiconductor Gas Sensors

  • Moon, Young Kook;Shin, Min Sung;Jo, Young-Moo;Lim, Kyeorei;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • Misfueling accidents significantly damage the engines of both gasoline and diesel vehicles, and should be avoided by rapid and accurate fuel discrimination. Gasoline fuel contains bioethanol. Thus, the detection of ethanol vapor produced by gasoline can be used to distinguish between gasoline and diesel. In the present study, Pt-doped $SnO_2$ hollow nanospheres, Mg-doped $In_2O_3$ hollow microspheres, and Pt-doped ZnO nanostructures have been used as gas sensors to discriminate between gasoline and diesel fuels. All three sensors are able to detect and discriminate between gases evaporating from gasoline and diesel. Among the sensors, the Mg-doped $In_2O_3$ hollow microspheres show a significant gas response (resistance ratio = 4.97) quickly (~3 s) after exposure to gasoline-evaporated gas at $225^{\circ}C$, but did not show any substantial response to diesel-evaporated gas. This demonstrates that gasoline and diesel fuels can be discriminated using small and cost-effective oxide semiconductor gas sensors.

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin;Shi, Wenying;Su, Yuheng;Hou, Hongxiang;Du, Qiyun;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.225-244
    • /
    • 2017
  • A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.