• Title/Summary/Keyword: Hollow fiber (HF) assay

Search Result 2, Processing Time 0.131 seconds

Anti-cancer Activities of Extract from the Bark of Melia azedarach L. var. japonica Makino (고련피 추출물의 항암활성)

  • Kim, Hyun-Woo;Kang, Se-Chan
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.312-316
    • /
    • 2009
  • In the present study, the anti-cancer activity of 80% ethanol extracts from 120 kinds of medicinal herbs and native plants were investigated. Among them, the barks of Melia azedarach L. var. japonica Makino showed the highest cytotoxicity in HCT-15 human colon cancer cell. With this result, we carried out hollow fiber (HF) assay and anti-metastasis study to confirm the anti-cancer effects of M. azedarach var. japonica. In MTT assay, M. azedarach var. japonica.inhibited the proliferation of HCT-15 cells in dose-dependent manner. HF assay was carried out using A549 human adenocarcinoma cell, HCT-15 and SK-Hep1 human liver cancer cell via intraperitoneal (IP) and subcutaneous (SC) site. As a results, SK-Hep1 implanted in IP site showed the highest cytotoxicity. The result from metastatic model using B16/BL6 mouse corresponded to that of HF assay. These results suggest that the ethanol extract from M. azedarach var. japonica. might have a potent anti-cancer activity and advanced study is needed for the development of novel natural anti-cancer drug.

The Toxicity and Anti-cancer Activity of the Hexane Layer of Melia azedarach L. var. japonica Makino's Bark Extract

  • Kim, Hyun-Woo;Kang, Se-Chan
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • In this study, the 4-week oral toxicity and anti-cancer activity of the hexane layer of Melia azedarach L. var. japonica Makino's bark extract were investigated. We carried out a hollow fiber (HF) assay and 28-day repeated toxicity study to confirm the anti-cancer effect and safety of the hexane layer. The HF assay was carried out using an A549 human adenocarcinoma cell via intraperitoneal (IP) site with or without cisplatin. In the result, the 200 mg/kg b.w of hexane layer with 4 mg/kg b.w of cisplatin treated group, showed the highest cytotoxicity aginst A549 carcinoma cells. For the 28-day repeated toxicity study, 6 groups of 10 male and female mice were given by gavage 200, 100, or 50 mg/kg b.w hexane layer with or without 4 mg/kg b.w of cisplatin against body weight, and were then sacrificed for blood and tissue sampling. The subacute oral toxicity study in mice with doses of 200, 100, and 50 mg/kg b.w hexane layer showed no significant changes in body weight gain and general behavior. The cisplatin-treated group significantly decreased in body weight compared to the control group but regained weight with 100 and 200 mg/kg b.w of hexane layer. The biochemical analysis showed significant increase in several parameters (ALT, total billirubin, AST, creatinine, and BUN) in cisplatin-treated groups. However, in the group given a co-treatment of hexane layer (200 mg/kg b.w), levels of these parameters decreased. In hematological analysis, cisplatin induced the reduction of WBCs and neutrophils but co-treatment with hexane layer (100 and 200 mg/kg b.w) improved these toxicities caused by cisplatin. The histological profile of the livers showed eosinophilic cell foci in central vein and portal triad in cisplatin treated mice. These results show that hexane layer might have an anti-cancer activity and could improve the toxicity of cisplatin.