• Title/Summary/Keyword: Hollow cylinder structure

Search Result 12, Processing Time 0.021 seconds

Fabrication of Hollow Cylinder Tank Using Superplastic Forming Technology

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.799-803
    • /
    • 2008
  • The possibility of manufacturing titanium hollow cylinder tank for ramjet engine was demonstrated with superplastic forming of subscale article. An innovative manufacturing method to produce complex configuration from titanium multi-sheets by low hydrostatic pressure was presented. Finite element analysis on superplastic blow forming process has been carried out in order to improve the forming process when manufacturing subscale hollow cylinder structure using Ti-6Al-4V multi-sheets. The simulation focused on the reduction of forming time and obtaining finally required shape throughout investigating the deformation mode of sheet according to the forming conditions and die geometry. From pre-sized titanium sheets, near net shape of hollow cylinder tank is obtained by superplastic blow forming conducted using gas pressure of 15bar at 1148K. The result shows that the manufacturing method with superplastic forming of multi-sheets of titanium alloy has been successful for near net shape forming of subscale hollow cylinder tank of ramjet engine.

  • PDF

Characteristics of Heaving Motion of Hollow Circular Cylinder (내부가 빈 원기둥의 수직운동 특성)

  • Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • In the present investigation, the hydrodynamic characteristics of a vertically floating hollow cylinder in regular waves have been studied. The potential theory for solving the diffraction and radiation problem was employed by assuming that the heave response motion was linear. By using the matched eigenfunction expansion method, the characteristics of the exciting forces, hydrodynamic coefficients, and heave motion responses were investigated with various system parameters such as the radius and draft of a hollow cylinder. In the present analytical model, two resonances are identified: the system resonance of a hollow cylinder and the piston-mode resonance in the confined inner fluid region. The piston resonance mode is especially important in the motion response of a hollow circular cylinder. In many cases, the heave response at the piston resonance mode is large, and its resonant frequency can be predicted using the empirical formula of Fukuda (1977). The present design tool can be applied to analyze the motion response of a spar offshore structure with a moon pool.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid

  • Bian, Z.G.;Chen, W.Q.;Zhao, J.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.449-474
    • /
    • 2010
  • A smart hollow cylinder consisting of a host functionally graded elastic core layer and two surface homogeneous piezoelectric layers is presented in this paper. The bonding between the layers can be perfect or imperfect, depending on the parameters taken in the general linear spring-layer interface model. The effect of such weak interfaces on free vibration and steady-state response is then investigated. Piezoelectric layers at inner and outer surfaces are polarized axially or radially and act as a sensor and an actuator respectively. For a simply supported condition, the state equations with non-constant coefficients are obtained directly from the formulations of elasticity/piezoelasticity. An approximate laminated model is then introduced for the sake of solving the state equations conveniently. It is further assumed that the hollow cylinder is embedded in an elastic medium and is simultaneously filled with compressible fluid. The interaction between the structure and its surrounding media is taken into account. Numerical examples are finally given with discussions on the effect of some related parameters.

Investigation of the Noise Reduction in the Hollow Cylinder Structure (중공 원통형 구조물의 전달소음 감소 방안 연구)

  • Lee, Sang-Won;Lee, Jong-Kil;Jo, Chi-Yong
    • 대한공업교육학회지
    • /
    • v.36 no.1
    • /
    • pp.115-130
    • /
    • 2011
  • When the hollow cylinder structure moves in underwater with high speed structural can be propagated from the end of the structure to the front side. This noise can reduce the sensitivity of the conformal array which installed in the surface of the cylinder. To reduce this noise propagation it is suggested to install two self-reduction rings at the surrounding of the cylinder which is 500mm in diameter and 840mm in length. The places of the two noise reduction rings are 120mm and 240mm point from the end of the structure. Two noise reduction rings reduced 10.1 % of maximum stress. When outside noise frequency applied to the structure from the 4kZ to 6kHz, 20dB noise reduction was calculated using 6 order polynomial equation. When outside noise frequency also applied to the structure with 200Hz, 500Hz, 900Hz, maximum sound pressure level point moved to the end of the structure. Most conformal sensors are fabricated at the front side of the structure. Based on the simulation results proposed two rings can be reduced noise propagation from the tail of the structure effectively.

Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow (이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구)

  • Kim, San;Chung, Ji Hong;Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

Nurmerical Study on the Discharge Characteristics of Cylindrical Microcavity Structure (수치해석을 통한 초미세 방전 소자의 방전 특성 연구)

  • Seo, Jeong-Hyun;Kang, Kyoung-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.641-647
    • /
    • 2008
  • In this paper, we have studied the basic discharge characteristics of ac-type cylindrical microcavity structure. The structure has a two electrodes, which are positioned in the bottom of the cavity and in the side wall of the cylinder, respectively. The discharge showed asymmetric phenomena depending on the position of a cathode electrode. When the bottom electrode was a cathode, the discharge was stronger even though the area of the cathode was smaller than that of the anode. Simulation results revealed that the focused electric field toward the bottom electrode increased ion density in the space which in turn strengthened the cathode sheath and ionization process.

Design and Optimization of Vibration-resistant and Heat-insulating Support Structure of Fuel Cylinder for LNG Vehicles (차량용 LNG 연료 용기의 내진동 단열지지구조 설계 및 최적화)

  • Kwon, Hyun-Wook;Hwang, In-Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.6-11
    • /
    • 2014
  • To optimize the design of fuel cylinder for LNG vehicles, we introduced the design parameters of the inner and the outer tank of the vessel support structure by analyzing the structural characteristics of conventional design. We selected the inner and outer diameter of the hollow support bars and a dimension of the inner structure of the vessel among the design parameters for design optimization. In this study the temperature distribution and thermal stress of the support structure were evaluated by using the utility program as MSC/MARC. The evaluation criteria are first mode natural frequency, total transferred energy through support structure and thermal stress. The developed design satisfied the design criteria and it was made of prototype. The prototype was verified through three-dimensional vibration testing and thermal performance test.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.