• Title/Summary/Keyword: Hollow column

Search Result 211, Processing Time 0.029 seconds

Optimization of RC polygonal cross-sections under compression and biaxial bending with QPSO

  • de Oliveira, Lucas C.;de Almeida, Felipe S.;Gomes, Herbert M.
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.127-141
    • /
    • 2022
  • In this paper, a numerical procedure is proposed for achieving the minimum cost design of reinforced concrete polygonal column cross-sections under compression and biaxial bending. A methodology is developed to integrate the metaheuristic algorithm Quantum Particle Swarm Optimization (QPSO) with an algorithm for the evaluation of the strength of reinforced concrete cross-sections under combined axial load and biaxial bending, according to the design criteria of Brazilian Standard ABNT NBR 6118:2014. The objective function formulation takes into account the costs of concrete, reinforcement, and formwork. The cross-section dimensions, the number and diameter of rebar and the concrete strength are taken as discrete design variables. This methodology is applied to polygonal cross-sections, such as rectangular sections, rectangular hollow sections, and L-shaped cross-sections. To evaluate the efficiency of the methodology, the optimal solutions obtained were compared to results reported by other authors using conventional methods or alternative optimization techniques. An additional study investigates the effect on final costs for an alternative parametrization of rebar positioning on the cross-section. The proposed optimization method proved to be efficient in the search for optimal solutions, presenting consistent results that confirm the importance of using optimization techniques in the design of reinforced concrete structures.

Development of the Construction Procedures Prototype and Analysis of Construction Period for the HPC Method (HPC공법의 공사절차 프로토타입 개발 및 공사기간 분석)

  • Kim, Jae-Yeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.577-585
    • /
    • 2017
  • HPC method is developing to improve the constructability and structural performance of the existing PC method. The objective of this study is to develop construction procedures and to analysis of construction period for HPC method. In order to develop construction procedures, the building construction data of the existing half-slab method was analyzed. Analyzing design drawings and specifications of nine construction cases, a prototype of half-slab method, was drawn. Applying the core technology of HPC method to the drawn prototype of half-slab method, a prototype of HPC method, was developed. The differences of both methods were 'installing PC column' and 'placing topping concrete'. To analysis the differences of both methods, seven construction cases were analyzed. According to the analysis for HPC method, cases1 and 2 had columns divided for construction shortened about 16% of a construction period. The schedule of column assembly work was analyzed to be shortened much. That is judged to be because the use of a hollow PC column leads to a decrease in the number of columns. In particular, if HPC method is applied to a building construction site using large columns, it is analyzed to shorten a construction period more than the existing Half-slab method.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

Experimental Behavior of Circular Tube Members with 600MPa High-strength Steel (600MPa급 고강도 원형강관 부재의 성능 평가)

  • Lee, Eun-Taik;Cho, Jae-Young;Shim, Hyun-Ju;Kim, Jin-Ho
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • Recent advances of technology in materials science have made it easy to respond to user's needs on high performance steel in civil and building structures. The high-performance and high-strength steel are required for large scale structure and high-rise building to have high-strength, high fracture toughness and better weldability etc. Therefore development of 600MPa class steel for mega structure is necessary. high strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. This study researched the structural behavior of high strength circular tubes compression and under flexure. Three column tests and three flexural tests were carried out. The suitability of existing design formulae(KBC 2009) and the structural behavior were investigated through these columns and beams with various types.

Experimental Study on the Fire Resistance of Concrete Filled Steel Tubes according to Concrete Compressive Strengths (콘크리트 압축강도에 따른 강관기둥부재의 내화성능에 관한 실험적 연구)

  • Kwon, In-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Concrete filled steel tubes(CFST) is considered as a column having better structural stability and better performance of fire resistance than that made with H-section and hollow section in itself. To get the fire resistance of the CFST, two kinds of concrete strength were used, 21 MPa, 40 MPa and 4 sorts of the applied loads were calculated and used to the specimens such as 3.5 m long, round and rectangular section. After various fire tests under 4 sorts of load ratios, the fire resistance of the CFST is not possible to get over 1 hour because of the rapid decrease of concrete strength. The below 50% of the applied load is recommended to obtain over 1 hour fire resistance of the CFST.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

An Analytical Study for Structural Behaviors of Unbonded Precast Rectangular Hollow Section Concrete Piers (비부착 프리캐스트 중공 사각 단면 교각의 구조거동에 관한 해석적 연구)

  • Choi, Seung-Won;Kim, Ick-Hyun;Cho, Jae-Yeo;Chang, Sung-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.61-69
    • /
    • 2010
  • Unbonded precast concrete piers have better seismic performances than conventional reinforced concrete piers. In this research, seismic performances of unbonded precast prestressed concrete piers are analyzed using OpenSEES. Main parameters of analysis are concrete strength, jacking force ratio, ratio of tendon, and size of precast segment. In results, as the ratio of tendon and jacking force ratio increase, the flexural strength increases at softening state and ultimate state. Concrete strength and size of precast segment are negligible. But initial jacking force ratio leads to early yielding of prestressing tendon. Since compressive strain in core concrete is much less than ultimate strain, it can be expected that the amount of transverse steel reinforcement is to be reduced in comparison with conventional reinforced concrete column.

Simultaneous Determination of Tetracycline Antibiotics by 3-Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME) and HPLC-UV/Vis (3-상 속빈 섬유-액체상 미량추출법(HF-LPME)과 HPLC-UV/Vis을 이용한 Tetracycline류 항생제 동시분석)

  • Oh, Woong Kyo;Myung, Seung-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.535-542
    • /
    • 2014
  • A simple and efficient preconcentration method was developed using three-phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of tetracycline antibiotics (tetracycline, oxytetracycline, and chlortetracycline). The tetracycline antibiotics were separated simultaneously on a column ($C_8$, $3.0{\times}150mm$, $3{\mu}m$) with high selectivity and sensitivity using gradient elution. Under optimized conditions (extraction solvent, heptanal; pH of donor, 9.0; pH of acceptor, 1.0; stirring speed, 700 rpm; NaCl salt, 0%; and extraction time, 60 min), enrichment factors (EF) were between 5.6 and 22.3. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of $0.08{\sim}0.8{\mu}g/mL$ and $0.4{\sim}1.6{\mu}g/mL$, respectively. The calibration curves were linear within the range of $0.1{\sim}32{\mu}g/mL$ with the square of the correlation coefficient being more than 0.995. The precision (as a relative standard deviation, RSD) and accuracy (as a relative recovery) within working range were 1.3~9.1% and 84~118%, respectively.

Comparison of Methods for the Analysis Percentile of Seismic Hazards (지진재해도의 백분위수 분석 방법 비교)

  • Rhee, Hyun-Me;Seo, Jung-Moon;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.43-51
    • /
    • 2011
  • Probabilistic seismic hazard analysis (PSHA), which can effectively apply inevitable uncertainties in seismic data, considers a number of seismotectonic models and attenuation equations. The calculated hazard by PSHA is generally a value dependent on peak ground acceleration (PGA) and expresses the value as an annual exceedance probability. To represent the uncertainty range of a hazard which has occurred using various seismic data, a hazard curve figure shows both a mean curve and percentile curves (15, 50, and 85). The percentile performs an important role in that it indicates the uncertainty range of the calculated hazard, could be calculated using various methods by the relation of the weight and hazard. This study using the weight accumulation method, the weighted hazard method, the maximum likelihood method, and the moment method, has calculated the percentile of the computed hazard by PSHA on the Shinuljin 1, 2 site. The calculated percentile using the weight accumulation method, the weighted hazard method, and the maximum likelihood method, have similar trends and represent the range of all computed hazards by PSHA. The calculated percentile using the moment method effectively showed the range of hazards at the source which includes a site. This study suggests the moment method as effective percentile calculation method considering the almost same mean hazard for the seismotectonic model and a source which includes a site.