• Title/Summary/Keyword: Hollow Type Joint

Search Result 26, Processing Time 0.029 seconds

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

The behaviour of a new type of connection system for light-weight steel structures applied to roof trusses

  • Kaitila, Olli;Kesti, Jyrki;Makelainen, Pentti
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.17-32
    • /
    • 2001
  • The Rosette-joining system is a completely new press-joining method for cold-formed steel structures. One Rosette-joint has a shear capacity equal to that of approximately four screws or rivets. The Rosette thin-walled steel truss system presents a new fully integrated prefabricated alternative to light-weight roof truss structures. The trusses are built up on special industrial production lines from modified top hat sections used as top and bottom chords and channel sections used as webs which are joined together with the Rosette press-joining technique to form a completed structure easy to transport and install. A single web section is used when sufficient but can be strengthened by double-nesting two separate sections or by using two lateral profiles where greater compressive axial forces are met. An individual joint in the truss can be strengthened by introducing a hollow bolt into the joint hole. The bolt gives the connection capacity a boost of approximately 20%. A series of laboratory tests have been carried out in order to verify the Rosette truss system in practice. In addition to compression tests on individual sections of different lengths, tests have also been done on small structural assemblies and on actual full-scale trusses of a span of 10 metres. Design calculations have been performed on selected roof truss geometries based on the test results, FE-analysis and on the Eurocode 3 and U.S.(AISI) design codes.

The Prediction of Yield Load in Circular Tubular T-type Cross Sections on the Truss Structures (강관트러스의 T형 격점부의 항복하중 예측에 관한 연구)

  • Park, Il Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • many steel tubular truss as roof structures are used of the large span structures Steel tubular sectioned truss has the structural merits in compared with other sections such as H, L-shape sections However it occurs local buckling at the joint of branch in truss and it makes the deterioration of loading capacity Loading capacity and deformation characteristics of truss joints are very complicate so it is very hard to predict exact solution of them Therefore this thesis dealt with T-type joints of steel circular hollow sectioned truss. A series of experimental scheme were planned and mainly experimental parameters were : ratio of diameter of branch-diameter of main chord(d/D). diameter-thickness(T/D) of main chord. In this paper predicted yield load capacity using by closed ring analysis method additionally compared with that of suggested by closed ring analysis method additionally compared with that of suggested by other countries.

  • PDF

The Study on Weathering Hollows Developed on the Coast of Dapyeong-ri, Sacheon-si (사천시 다평리 해안에서 발달한 풍화혈에 관한 연구)

  • Tak, Hanmyeong
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.5
    • /
    • pp.459-472
    • /
    • 2015
  • Weathering hollows which develop on various rocks are the terrain whose lithological characteristics and formation of the bed rock is under active discussion. The shore in Dapyeong-ri, Sacheon-si has alternation of strata of pelite and sandstone, and the weathering hollows develop on the shore platform and the sea cliff where sandstone is exposed. To analyze the development characteristics of weathering hollows by development of joints, interpenetration of veins and physical and chemical features of the stone, the study conducted a topographic investigation, XRD analysis and an observation using a polarizing microscope. As the result of the investigation and analysis, tafoni and gnamma are spread in the same area and new tafoni is being formed as the existing weathering hollows are destroyed by the expansion and growth of the joint. The vein, which was found to be a quartz vein, may accelerate the development of weathering hollows combining with the joint but may also hamper their growth if the veins are penetrating perpendicularly. It is generally known that weathering hollows develop regardless of the type of rocks, however, the analysis on the lithological features show that the development is limited on the fractured and broken rocks.

  • PDF

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.