• 제목/요약/키워드: Hole-injection buffer layer

검색결과 33건 처리시간 0.028초

Efficient Organic Light-Emitting Diodes with a use of Hole-injection Buffer Layer

  • Kim, Sang-Keol;Chung, Dong-Hoe;Chung, Taek-Gyun;Kim, Tae-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.766-769
    • /
    • 2002
  • We have seen the effects of hole-injection buffer layer in organic light-emitting diodes using copper phthalocyanine(CuPc), poly(vinylcarbazole)(PVK), and Poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)(PEDOT:PSS) in a device structure of ITO/buffer/TPD/$Alq_3$/Al. Polymer PVK and PEDOT:PSS buffer layer was made using spin casting method and the CuPc layer was made using thermal evaporation. Current-voltage characteristics, luminance-voltage characteristics and efficiency of device were measured at room temperature with a thickness variation of buffer layer. We have obtained an improvement of the external quantum efficiency by a factor of two, four, and two and half when the CuPc, PVK, and PEDOT:PSS buffer layer are used, respectively. The enhancement of the efficiency is attributed to the improved balance of holes and elelctrons due to the use of hole-injection buffer layer. The CuPc and PEDOT:PSS layer functions as a hole-injection supporter and the PVK layer as a hole-blocking one.

  • PDF

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • 박원혁;김강훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Efficient Organic Light-emitting Diodes using Hole-injection Buffer Layer

  • Chung, Dong-Hoe;Kim, Sang-Keol;Lee, Joon-Yng;Hong, Jin-Woong;Cho, Hyun-Nam;Kim, Young-Sik;Kim, Tae-Wan
    • Journal of Information Display
    • /
    • 제4권1호
    • /
    • pp.29-33
    • /
    • 2003
  • We have investigated the effects of hole-injection buffer layer in organic light-emitting diodes using copper phthalocyanine (CuPc), poly(vinylcarbazole)(PVK), and Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) in a device structure of $ITO/bufferr/TPD/Alq_3/Al$. Polymer PVK and PEDOT:PSS buffer layer were produced using the spin casting method where as the CuPc layer was produced using thermal evaporation. Current-voltage characteristics, luminance-voltage characteristics and efficiency of device were measured at room temperature at various a thickness of the buffer layer. We observed an improvement in the external quantum efficiency by a factor of two, four, and two and half when the CuPc, PVK, and PEDOT:PSS buffer layer were used, respectively. The enhancement of the efficiency is assumed to be attributed to the improved balance of holes and elelctrons resulting from the use of hole-injection buffer layer. The CuPc and PEDOT:PSS layer function as a hole-injection supporter and the PVK layer as a hole-blocking one.

Stability of ITO/Buffer Layer/TPD/Alq3/Cathode Organic Light-emitting Diode

  • Chung, Dong-Hoe;Ahn, Joon-Ho;Oh, Hyun-Seok;Park, Jung-Kyu;Lee, Won-Jae;Choi, Sung-Jai;Jang, Kyung-Uk;Shin, Eun-Chul;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.260-264
    • /
    • 2007
  • We have studied stability in organic light-emitting diode depending on buffer layer and cathode. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. An electron injection energy barrier into organic material is different depending on a work function of cathodes. Theoretically, the energy barriers for the electron injection are 1.2 eV, -0.1 eV, and 0.0 eV for Al, LiAl, and LiF/Al at 300 K, respectively. We considered the cases that holes are injected to organic light-emitting diode. The hole injection energy barrier is about 0.7 eV between ITO and TPD without buffer layer. For hole-injection buffer layers of CuPc and PEDOT:PSS, the hole injection energy barriers are 0.4 eV and 0.5 eV, respectively. When the buffer layer of CuPc and PEDOT:PSS is existed, we observed the effects of hole injection energy barrier, and a reduction of operating-voltage. However, in case of PVK buffer layer, the hole injection energy barrier becomes high(1.0 eV). Even though the operating voltage becomes high, the efficiency is improved. A device structure for optimal lifetime condition is ITO/PEDOT:PSS/TPD/$Alq_3$/LiAl at an initial luminance of $300cd/m^2$.

유기 전기 발광 소자에서 $\alpha$-septithiophene을 이용한 buffer layer의 영향 (The effects of buffer layer using $\alpha$-septithiophene on the organic light emitting diode)

  • 이기욱;임성택;신동명;박종욱;박호철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.53-56
    • /
    • 2002
  • The effect of $\alpha$-septithiophene (${\alpha}-7T$) layers on the organic light emitting diode(OLED) was studied. The ${\alpha}-7T$ was used for a buffer layer in OLED. Hole injection was investigated and improved emission efficiency. The OLEDs structure can be described as indium tin oxide(ITO)/ buffer layer / hole transporting layer / emitting layer / electron transporting layer / LiF / Al. The hole transporting layer were composed of N,N-diphenyl-N,N-di(3-methylphenyl)-1,1-biphenyl-4,4-diamine(TPD), and N,N-di(naphthalene-1-ly)-N,N-diphenyl-benzidine( ${\alpha}$-NPD). The emitting layer, and electron transporting layer consist of tris(8-hydroxyquinolinato) aluminum($Alq_3$). All organic layer were deposited at a background pressure of less than $10^{-6}$ torr using ultra high vacuum (UHV) system. The ${\alpha}-7T$ layer can substitute the hole blocking layer, and improve hole injection properties.

  • PDF

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • 박순미;김윤학;이연진;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Effects of PEDOT:PSS Buffer Layer in a Device Structure of ITO/PEDOT:PSS/TPD/Alq3/Cathode

  • Ahn, Joon-Ho;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권1호
    • /
    • pp.25-28
    • /
    • 2005
  • We have investigated the effects of hole-injection buffer layer in organic light-emitting diodes using poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)(PEDOT:PSS) in a device structure of $ITO/PEDOT:PSS/TPD/Alq_{3}/cathode$. Polymer PEDOT:PSS buffer layer was made by spin casting method. Current-voltage, luminance-voltage characteristics and efficiency of device were measured at room temperature with a variation of cathode materials; Al, LiF/Al, LiAl, and Ca/Al. The device with LiF/Al cathode shows an improvement of external quantum efficiency approximately by a factor of ten compared to that of Al cathode only device. Our observation shows that cathode is important in improving the efficiency of the organic light-emitting diodes.

RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구 (A Study on the Electrode formation of an Organic EL Devices using the RF Plasma)

  • 이은학
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.

The effect of fullerene on the device performance of organic light-emitting

  • Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1805-1808
    • /
    • 2006
  • In this paper, we describe a versatile use of fullerene(C60) as a charge transporting material for organic light-emitting diodes. The use of fullerene as a buffer layer for an anode, a doping material for hole transport layer, and an electron transport layer was investigated. Fullerene improved the hole injection from an anode to a hole transport layer by lowering the interfacial energy barrier and enhanced the lifetime of the device as a doping material for a hole transport layer. In addition, it was also effective as an electron transporting material to get low driving voltage in the device.

  • PDF