• 제목/요약/키워드: Hole shape

검색결과 524건 처리시간 0.021초

원형공을 가진 보의 응력분포와 소성역 전파거동에 관한 연구 (A study on the stress distribution and plastic area propagation in the beams with a circular hole)

  • 김희철;왕지석;이경호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.225-239
    • /
    • 1985
  • The beams with a circular hole are often used for constructing structures. The center of the circular hole is normally located in neutral axis and the stress state around the hole due to bending moment is trivial. But the stress level around the hole due to shear force is expected to be significant especially in the case of beams made of shape steels. In this paper, the stress distributions around the circular hole of beams were presented. Using polar coordinates and generallized stress function, the formulas of stress components were derived. The aspects of plastic area propagations based on von Mises yield criteria were also shown graphically. In order to verify the formulas presented in this paper, a beam of I-shape steel with a circular hole was made and the strains around the hole were measured under various loading conditions. The experimental results were proved to coincide fairly well with the calculated values.

  • PDF

원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석 (The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole)

  • 전형용;성낙원;한근조
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

BTA 드릴링에 있어서 SM55C의 가공면 형상에 관한 연구 (A study on analysis of SM55C worked-shape in the BTA drilling)

  • 장성화
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.84-89
    • /
    • 1998
  • BTA drilling among the deep hole drilling is using for the improvement of productivity and the high-efficient working. As the deep hole drilling with BTA drill is satisfied with the required quality by one-pass processing, more deeper hole depth, the accuracy of materials is affected by bending vibration and cutting speed. This paper is studied that the shapes of material (surface roughness, roundness) is affected by cutting condition compared actual roundness with lobe shape with modeling of computer through the experiments in the BTA drilling system with BTA drill.

  • PDF

Spectral resolution evaluation by MCNP simulation for airborne alpha detection system with a collimator

  • Kim, Min Ji;Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1311-1317
    • /
    • 2021
  • In this study, an airborne alpha detection system, which consists of a passivated implanted planar silicon (PIPS) detector and an air filter, was developed. A collimator applied to the alpha detection system showed an enhancement in resolution and a degradation in detection efficiency. The resolution and detection efficiency were compared and analyzed to evaluate the performance of the collimator. Thus, the resolution was found to be more important than the efficiency as a determining factor of the detection system performance, from the viewpoint of radionuclide identification. The performance was evaluated on three properties of the collimator: hole shape, hole length, and the ratio between the hole and frame pitches. From the hole shape performance evaluation, a hexagonal collimator showed the highest resolution. Further, the collimator with a hole pitch of 14 mm was found to have the highest resolution while that with a frame pitch of 4-6 mm (i.e., 1.2-1.4 times longer than the hole pitch) showed the highest resolution.

3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구 (A Study on the T-branch Forming with 3-D Finite Element Method)

  • 홍대훈;황두순;신동필;홍성인
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

음극이 자동 정렬된 화산형 초미세 실리콘 전계방출 소자 제작 (Fabrication of Self -aligned volcano Shape Silicon Field Emitter)

  • 고태영;이상조;정복현;조형석;이승협;전동렬
    • 한국진공학회지
    • /
    • 제5권2호
    • /
    • pp.113-118
    • /
    • 1996
  • Aligning a cathode tip at the center of a gate hole is important in gated filed emission devices. We have fabricated a silicon field emitter using a following process so that a cathode and a gate hole are automatically aligned . After forming silicon tips on a silicon wafer, the wafer was covered with the $SiO_2$, gate metal, and photoresistive(PR) films. Because of the viscosity of the PR films, a spot where cathode tips were located protruded above the surface. By ashing the surface of the PR film, the gate metal above the tip apex was exposed when other area was still covered with the PR film. The exposed gate metal and subsequenlty the $SiO_2$ layer were selectively etched. The result produced a field emitter in which the gate film was in volcano shape and the cathode tip was located at the center of the gate hole. Computer simulation showed that the volcano shape and the cathode tip was located at the center of the gat hole. Computer simulation showed that the volcano shape emitter higher current and the electron beam which was focused better than the emitter for which the gate film was flat.

  • PDF

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계 (Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques)

  • 이기돈;김광용
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

입구 형상에 따른 회전 송출공의 송출특성 연구 (A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape)

  • 강세원;하경표;고상근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF