• Title/Summary/Keyword: Hole plate

Search Result 474, Processing Time 0.027 seconds

An experimental study on adjusting mechanism of Remote Center Compliance for assembly robots with shear stress control of Elastomer Shear Pads(ESP) (ESP의 전단 변형을 이용한 원격 순응 중심 장치의 순응 중심 조절 방법에 관한 실험적 고찰)

  • Lee, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • In this paper, an experimental study is performed to adjust position of compliance center of Elastomer Shear Pad Remote Center Compliance (ESP RCC) device, which is used on precise peg in hole process. In the study, variation of the lateral/axial stiffness of the ESP is proposed as a control parameter to adjust the position of compliance center of the ESP RCC. The variation of the stiffness of the ESP is achieved by controlling the shear stress of the ESP. To control the shear stress of the ESP, position of top side of the ESP is changed while remaining bottom side of the ESP is fixed on the RCC plate. To evaluate effect of the proposed idea, stiffness variations of the ESP on various shear stresses are measured, and variation of the compliance center is measured with the ESP RCC that can control the position of compliance center by using the shear stress. The measured data shows unique characteristics that have not been shown in other types of ESP VRCCs.

Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model (유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측)

  • Won S. Y.;Kim Y. S.;Na K. H.;Takahashi Hiroshi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network (인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구)

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

A Study for Improvement of Cornering Fatigue Test by Eliminating a Fretting Effect on Steel Wheel to enhance Durability and Reliability (스틸 휠 굽힘 모멘트 내구시험의 내구신뢰성 개선에 대한 연구 - 스틸 휠 접촉면의 프랫팅 제거 -)

  • Chung, Soo-Sik;Jung, Won-Wook;Yoo, Yeon-Sang;Kang, Woo-Jong;Kim, Dae-Sung;Kwon, Il-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1326-1330
    • /
    • 2008
  • The failure mode of steel road wheels in a vehicle is cracks from ventilation hole through to contact plane on steel wheel's disc plate. But a number of cracks of Cornering Fatigue Limit Test is on contact plane near to wheel nut mounting area, even though it's satisfied with specified cycles. So this paper searches out causes to improve durability and reliability of C.F.T by uni-axial bending moment test. The verified cause is a "fretting" on contact area of steel wheel. In result, this paper suggests a solution to prevent a fretting by inserting a damping shim, 0.7mm between steel wheel contact areas. Therefore this paper makes it possible to move crack position of C.F.T in steel wheel from contact plane to vehicle's failure mode.

  • PDF

Local Shape Optimization of Notches in Airframe for Fatigue-Life Extension (피로수명 연장을 위한 항공기 프레임 노치부위 국부형상 최적설계)

  • Won, Jun-Ho;Choi, Joo-Ho;Gang, Jin-Hyuk;An, Da-Wn;Yoon, Gi-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1132-1139
    • /
    • 2008
  • The aim of this study is to apply shape optimization technique for the repair of aging airframe components, which may extend fatigue life substantially. Free-form optimum shapes of a cracked part to be reworked or replaced are investigated with the objective to minimize the peak local stress concentration or fatigue-damage. Iterative non-gradient method, which is based on an analogy with biological growth, is employed by incorporating the robust optimization method to take account of the stochastic nature of the loading conditions. Numerical examples of optimal hole shape in a flat plate are presented to validate the proposed method. The method is then applied to determine the reworked or replacement shape for the repair of a cracked rib in the rear assembly wing body of aircraft.

AN EXPERIMENTAL STUDY ON HARDNESS IN VISIBLE LIGHT-CURED COMPOSITE RESIN AT VARYING DEPTH (가시광선(可視光線) 복합(復合)레진의 심부경도(深部硬度) 측정(測定)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Myoung, Jae-Keun;Lee, Myoung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.11 no.1
    • /
    • pp.43-52
    • /
    • 1985
  • The purpose of this study was to measure the Micro-Knoop Hardness of three commercial visible light-cured composite resins (Plurafil-super, He1iosit and Durafi) according to the difference of depth and shade. Specimens of the resin were prepapared in plastic tubes 5mm in diameter with height of 5mm, and the tubes were put into the columned holes in stone molds. The molds were exposed to the visible light through the hole 5mm in diameter in metal plate. Specimens were sectioned (longitudinally) with disk. Knoop Hardness measurements were made at the depth of surface, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0mm from the surface to the deep portion. Knoop Hardness numbers were taken on each depth under 20gm load for 10 seconds with Shimadzu Tester. The following results were: 1. The highest hardness value was measured at 0.5mm depth. Then the deeper the depth, the lesser the hardness was observed. 2. The value of hardness was directly propotional to the time of exposure to the light. 3. The hardness of light shade resin was higher than the that of the dark shade. 4. The pattern of hardness change at varying depth is similar to all the experimental materials with no relation to the shade nor exposure time.

  • PDF

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Experimental and Numerical Study on an Air-Stabilized Flexible Disk Rotating Close to a Rigid Rotating Disk (회전원판 근처에서 회전하는 유연디스크에 대한 실험 및 수치해석)

  • Gad, Abdelrasoul M.M.;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2009
  • The present work is an experimental and analytical study on a flexible disk rotating close to a rigid rotating disk in open air. In the analytical study, the air flow in the gap between the flexible disk and the rigid disk is modeled using Navier-Stokes and continuity equations while the flexible disk is modeled using the linear plate theory. The flow equations are discretized using the cell centered finite volume method (FVM) and solved numerically with semi-implicit pressure-linked equations (SIMPLE algorithm). The spatial terms in the disk equation are discretized using the finite difference method (FDM) and the time integration is performed using fourth-order Runge-Kutta method. An experimental test-rig is designed to investigate the dynamics of the flexible disk when rotating close to a co-rotating, a counter-rotating and a fixed rigid disk, which works as a stabilizer. The effects of rotational speed, initial gap height and inlet-hole radius on the flexible disk displacement and its vibration amplitude are investigated experimentally for the different types of stabilizer. Finally, the analytical and experimental results are compared.

  • PDF

Medpor Craniotomy Gap Wedge Designed to Fill Small Bone Defects along Cranial Bone Flap

  • Goh, Duck-Ho;Kim, Gyoung-Ju;Park, Jae-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.195-198
    • /
    • 2009
  • Objective : Medpor porous polyethylene was used to reconstruct small bone defects (gaps and burr holes) along a craniotomy bone flap. The feasibility and cosmetic results were evaluated. Methods : Medpor Craniotomy Gap Wedges, V and T, were designed. The V implant is a 10 cm-long wedge strip, the cross section of which is an isosceles triangle with a 4 mm-long base, making it suitable for gaps less than 4 mm after trimming. Meanwhile, the Medpor T wedge includes a 10 mm-wide thin plate on the top surface of the Medpor V Wedge, making it suitable for gaps wider than 4 mm and burr holes. Sixty-eight pterional craniotomies and 39 superciliary approaches were performed using the implants, and the operative results were evaluated with respect to the cosmetic results and pain or tenderness related to the cranial flap. Results : The small bone defects were eliminated with less than 10 minutes additional operative time. In a physical examination, there were no considerable cosmetic problems regarding to the cranial bone defects, such as a linear depression or dimple in the forehead, anterior temporal hollow, preauricular depression, and parietal burr hole defect. Plus, no patient suffered from any infectious complications. Conclusion : The Medpor Craniotomy Gap Wedge is technically easy to work with for reconstructing small bone defects, such as the bone gaps and burr holes created by a craniotomy, and produces excellent cosmetic results.