• Title/Summary/Keyword: Hole effect

Search Result 1,242, Processing Time 0.025 seconds

Co-existence of Random Telegraph Noise and Single-Hole-Tunneling State in Gate-All-Around PMOS Silicon Nanowire Field-Effect-Transistors

  • Hong, Byoung-Hak;Lee, Seong-Joo;Hwang, Sung-Woo;Cho, Keun-Hwi;Yeo, Kyoung-Hwan;Kim, Dong-Won;Jin, Gyo-Young;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • Low temperature hole transport characteristics of gate-all-around p-channel metal oxide semiconductor (PMOS) type silicon nanowire field-effect-transistors with the radius of 5 nm and lengths of 44-46 nm are presented. They show coexisting two single hole states randomly switching between each other. Analysis of Coulomb diamonds of these two switching states reveals a variety of electrostatic effects which is originated by the potential of a single hole captured in the trap near the nanowire.

Effect of Etch Hole Position and Sacrificial Layer Residue on a Novel Half-Coaxial Transmission Line Filter (에치홀의 위치와 희생층의 잔류물이 전송선 필터 응답에 미치는 영향)

  • Kim, Yong-Sung;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.284-285
    • /
    • 2007
  • In this paper, we present the effect on a novel transmission line filter response by the etch hole position on the suspended ground and the residue on the resonator under ground plane. We defined the etch hole offset as the distance from the sidewall of the suspended ground to the nearest side of the etch holes. We simulated new filter responses to reflect the real value of the changed etch hole offset caused by characteristics of negative photoresist. Return loss is distorted by the residue on the center conductor remained after sacrificial layer removing. By comparison of simulation and measurements, we concluded the residue on the resonator distorted the RF response worse than etch hole offset variation did.

  • PDF

The Effect of Fatigue Crack Behavior on the Variable Depth of Micro Hole Defects in SM20C at the Symmetric Position (대칭위치에 존재하는 미소원공결함의 깊이변화가 SM20C의 피로균열거동에 미치는 영향)

  • 송삼홍;김성태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.856-860
    • /
    • 2002
  • The main objective of this study is to consider the effect of fatigue crack behavior on the variable depth of micro hole defects in SM20C at the symmetric position. The fatigue crack propagation test is performed by rotary bending fatigue test machine. The relationship between crack length(2a), cycles(N) and crack growth rate(da/dN) are investigated in this study. The result from the rotary bending fatigue test under the applied stress at 250MPa turned out that the fatigue life illustrated almost constant when the depth of symmetric micro hole deflects is both part A and B at the hope depth(h) = 0.5mm.

  • PDF

Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique (PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구)

  • Kim, Ye Jee;Park, Soon Sang;Rhee, Dong Ho;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.

Analysis of the stress disribution around flaws and the interaction effects between fatigue cracks by finite element method (유한요소법에 의한 결함 주위의 응력분포와 피로크랙의 간섭효과)

  • Song, S.H.;Kim, J.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 1995
  • In order to analysis of the stress distribution around flaws and the interaction effects between fatigue cracks, stress around micro hole was analyzed by Finite Element Method(F.E.M.) and micro hole specimens were tested using rotary bending fatigue machine and twisting fatigue machine to identify stress effects for fatigue cracks initiating from micro holes and interaction effects between micro holes. The results are as follows : Interaction effects of .sigma. $_{y}$for the micro hole side is larger than the large micro hole side when the interval between micro holes is near. Stress concentration factor increase as the diameter of micro hole becomes smaller. But, stress field of micro hole is smaller than that of large micro hole at h .leq. r (h:depth of micro hole, r:radius of micro hole) and that of large hole is larger than that of small micro hole at h >r expect the small range from micro hole.e.

  • PDF

The Effect of Bottom-Hole Stemming Materials on Vibration Level at Urban Area Blasting (시가지 발파에서 공저 전색물이 발파진동에 미치는 영향)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1997
  • This study provides the results of two different blasting methods applied at the H Telcon construction site in Yeon-dong, Cheju Island. One is the traditional blasting method without bottom-hole stemming and the other with bottom-hole stemming using the materials such as sand, polystyrene and sawdust in 5~10 cm lengths. The effect of these materials on vibration level was studied. Assuming that safety criterion of vibration level be 0.5cm/set, 95% confidence limit line of measured data shows that maximum charge weight per delay could be increased in the following order; traditional methed, polystyrene stemming, sand stemming, sawdust stemming.

  • PDF

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

The effect of the surface defect from micro-hole for fatigue strength (피로강도에 대한 표면미소 결함의 영향)

  • 오환섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1989
  • This study was performed to investigate the effect of defect on fatigue strength under the stress of rotary bending. The specimens were made of low carbon steel having artificial microholes, namely, single micro-hole and two adjacent micro-holes as natural defects, and the effects of the diameter of hole and the distance between the holes on fatigue strength have been investigated. The obtained result can be summarized as follows: 1, The critical defect means the largest size of defect that does not affect fatigue limit, and correspondes to the size of defect leading to final fracture under fatigue limit of smooth specimen. The size of defect which has an effect on fatigue limit is larger than that of critical defect. 2, The defect larger than the critical defect affects fatigue strength for as a kind of size effect, and the physical meaning of size effect of defect is considered same as the one of notch effect.

  • PDF

Study on Surface Plasmon Electrode Using Metal Nano-Structure for Maximizing Sterilization of Dielectric Discharge (유전체 방전 살균 극대화를 위한 금속 나노 구조를 이용한 표면 플라즈몬 전극에 관한 연구)

  • Ki, Hyun-Chul;Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • In this study, we investigated plasmon effects to maximize the sterilization of dielectric discharge. We predicted the effect using the finite difference time domain (FDTD) method as a function of electrode shape, size, and period. The structure of the electrode was designed with a thickness of 100 nm of silver nanoparticles on a glass substrate, and was varied according to the shape, size, and period of the electrode hole. Based on the results, it was confirmed that the effect of plasmons was independent of the shape of the electrode hole. It was thus confirmed that the plasmon effect depended only on the size and period of the holes. Further, the plasmon effect was affected by the size rather than period of the holes. Because the absorption of light by the metal varied according to the size of the hole, the plasmon effect generated by the absorption of light also varied. The best results were obtained when the radius and period of the electrode holes were $0.1{\mu}m$ and $0.4{\mu}m$, respectively.

Implementation of the Electric Cauterizer with the Hole for Acupuncture (유침 구멍이 구비된 전기뜸기의 구현)

  • Jo, Bongkwan;He, Yunsheng
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • Objectives This study is on the implementation of the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Methods In this paper, we especially made a hole across the heat terminal of the electric cauterizer for acupuncture. Before the cauterization, the doctor treats a patient with needle. And after acupuncture, the heat terminal is to be superposed upon the needle along the hole to add the cauterization. Results There are 2 coupling methods that the heat terminal is to be superposed with the needle; one is the top-coupling and the other is side-coupling. The top-coupling means that the heat terminal is to be superposed upon the needle along the top of the needle, and side-coupling means that the heat terminal is to be superposed to the needle along the side of the needle. Conclusion This study was aimed to implement the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Not electric acupuncture but manual acupuncture is adopted. The electric cauterizer generates the heat $38{\sim}45^{\circ}C$. This heat is safe for skin not to burn. The electric cauterizer constitutes the smokeless moxa- pad which effects the skin DDS.