• Title/Summary/Keyword: Hole Searching

Search Result 24, Processing Time 0.016 seconds

Development of Defect Inspection System for PDP ITO Patterned Glass (PDP ITO 패턴유리의 결함 검사시스템 개발)

  • Song Jun Yeob;Park Hwa Young;Kim Hyun Jong;Jung Yeon Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.92-99
    • /
    • 2004
  • The formation degree of sustain (ITO pattern) decides quality of PDP (Plasma Display Panel). For this reason, it makes efforts in searching defects more than 30 un as 100%. Now, the existing inspection is dependent upon naked eye or microscope in off-line PDP manufacturing process. In this study developed prototype inspection system of PDP 170 glass is based on line-scan mechanism. Developed system creates information that detects and sorts kinds of defect automatically. Designed inspection technology adopts multi-vision method by slip-beam formation for the minimum of inspection time and detection algorithm is embodied in detection ability of developed system. Designed algorithm had to make good use of kernel matrix that draws up an approach to geometry. A characteristic of defects, as pin hole, substance, protrusion, are extracted from blob analysis method. Defects, as open, short, spots and et al, are distinguished by line type inspection algorithm. In experiment, we could have ensured ability of inspection that can be detected with reliability of up to 95% in about 60 seconds.

Deduction of Humanistic Metaphor based on Searching, Participation, Sharing and Analysis of Wearable Device (웨어러블 디바이스의 검색, 참여, 공유, 분석을 통한 인문학적 메타포 도출)

  • Lee, Won-Tae;Kang, Jang-Mook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • According to the lunching of Google glass, the interest for wearable computer is increasing. This paper is about how to apply humanity or humanist metaphor to the development and application of wearable computer. Humanity is consisted of dream, imagination and desire of human mind. However the software development methodology and application design of engineering part are consisted of the logical language and also they are testable. In this paper the different academics are combined and researched to develop the human-friendly application which are the design of humanities-applying wearable computer and the service scenarios. This paper shows the specific examples of services to search, share and analyze the information with wearable computer also presents what kinds of humanistic metaphor is able to apply in this process.

Thallium-201 Scan in Bone and Softtissue Sarcoma - Comparison with Tc-99m-MIBI and Tc-99m-MDP Scan - (악성 골 및 연부조직 종양에서 Tl-201 SCAN의 진단적 효능 - Tc-99m-MIBI 및 Tc-99m-MDP scan과의 비교 -)

  • Shin, Duk-Seop;Cho, Ihn-Ho;Ahn, Jong-Chul;Ahn, Myun-Hwan;Lee, Sang-Ho
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • PURPOSE : The purpose of this study is to know the ability of detecting malignant tumor tissue by Tl-201 scan, and to compare with that of Tc-99m-MIBI and Tc-99m-MDP scan. MATERIAL AND METHODS : Between February 1994 and December 1995,38 unselected patients with various bone pathologies were studied prospectively. Eighteen had malignant bone and soft tissue pathologies, while twenty had benign. All patients were studied with Tl-201, Tc-99mMIBI and Tc-99m-MDP scan prior to surgical biopsy. PICKER Prism 2000 gamma camera with high resolution parallel hole collimator was used for scanning. To avoid the interaction of isotope, the early(30min.) and delayed phase(3hrs.) of Tl-20l scan was performed first and Tc-99m-MIBI scan was performed after 30 minutes, and then Tc-99m-MDP scan 48 hours later. The scan images were visually evaluated by a blinded nuclear medicine physician. We could find true positive, true negative, false positive and false negative by the comparison of results with those of biopsy. We calculated positive and negative predictive value(%), sensitivity(%), specificity(%) and diagnostic accuracy(%) of each scan. RESULT : The results of each scan were 85.7, 100, 100, 85, 92.1% in Tl-201, 81, 94.1, 94.4, 80, 86.8% in Tc-99m-MIBI and 50, 66.7, 88.9, 20, 52.6% in Tc-99m-MDP scan. As a conclusion, Tl-201 scan was the most specific and accurate method for detecting malignant tumor tissue. Tc-99m-MIBI scan was also good for malignant tumor searching. CONCLUSION : With our results, we can use Tl-201 scan to differentiate benign from malignant tumor, and to evaluate the response of preoperative chemotherapy or radiotherapy, and to determine the residual tumor or local recurrence. For the better result, we need to have a more detail information about false positive cases and a more objective and quantitative reading technique.

  • PDF

Phase identification and degree of orientation measurements far fine-grained rock forming minerals using micro-area X-ray diffractometer -$Al_{2}SiO_{5}$ Polymorphs- (미소부 X-선 회절분석기를 이용한 미립조암광물의 상동정 및 배향도 측정 -$Al_{2}SiO_{5}$ 3상다형-)

  • 박찬수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2000
  • Measurements of phase identification and degree of orientation for fine-grained (about 0.3 mm in diameter) minerals in rock samples performed by micro-area X-ray diffractometer.$Al_{2}SiO_{5}$ polymorphs (andalusite, kyanite and sillimanite) were chosen for the measurements and target minerals were existed on thin sections. Micro-area X-ray diffractometer is composed of 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillating goniometer and position sensitive proportional counter (PSPC). $CuK_{\alpha}$ radiation was used as X-ray source and a pin hole ($50\;\mu\textrm{m}$$ in diameter) collimator was selected to focus radiation X-ray onto the target minerals. Phase identification and diffracted X-ray peak indexing were carried out by 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillation measurement. Then, 2(${\omega}\;{\phi}$)-circle oscillation measurement was made for the purpose of searching the prevailing lattice plane of the minerals on thin section surface. Finally, for a selected peak by 2-circle oscillation measurement, X-ray pole figure measurement was executed for the purpose of check the degree of orientation of the single lattice direction and examine its pole distribution. As a result of 3-circle oscillation measurement, it was possible that phase identification among $Al_{2}SiO_{5}$ polymorphs. And from the results of 2-circle oscillation measurement and X-ray pole figure measurement, we recognized that poles of andalusite (122), kyanite (200) and sillimanite (310) lattice plances were well developed with direction normal to each mineral surface plane respectively. Therfore, the measurements used with micro-area X-ray diffractometer in this study will be a useful tool of phase identification and degree of orientation measurement for fine-grained rock forming minerals.

  • PDF