• 제목/요약/키워드: Hole Quality

검색결과 394건 처리시간 0.024초

홍삼 내공검출을 위한 X-선 영상처리기술(I) - 내공검출에 적합한 전처리기법 - (X-ray Image Processing for the Korea Red Ginseng Inner Hole Detection ( I ) - Preprocessing technique for inner hole detection -)

  • 손재룡;최규홍;이강진;최동수;김기영
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.341-348
    • /
    • 2002
  • Quality evaluation of red ginsengs is determined by outer shape and inner qualities. Especially, the inner qualities are main grading criteria. Currently, red ginsengs are classified into 3-grades; heaven, earth and good. The best heaven grade must not include inner holes and sponge tissues. This study was conducted to develop a red ginseng sorting system using x-ray image processing technique. Because of lens characteristic, gray values of the central region in the x-ray image are higher and gradually decreased towards the edge regions. This difference of gray values gives trouble in segmentation and detection of inner holes in red ginseng image, so preprocessing technique is necessary. The preprocessing was done by subtracting source image from an empty background image. But, simple subtraction was not quite appropriate because of too small contrast between inner holes and sound part. Scaled subtraction images were obtained by multiplying all gray values by some numbers. However this method could not help to set threshold value because the gray values of root part are generally lower than body part when red ginseng is exposed to the x-ray. To determine threshold value for detecting inner holes, an algorithm was developed by increasing overall gray values of less clear images.

연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향 (Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines)

  • 우영민;배충식;이용표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF

빔 중첩율에 따른 티타늄 합금의 펨토초 레이저 어블레이션 (The Femto Second Laser Induced Ablation on the Titanium Alloy for Various Beam Overlap Ratio)

  • 정일영;강경호;김재도
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.17-23
    • /
    • 2010
  • Titanium alloy is one of the hard processing materials made by the traditional manufacturing method because of the excellent mechanical strength. Ablation of titanium alloy is investigated by using a femtosecond laser which is a regenerative amplified Ti:sapphire laser with 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Experiments are carried out under various ablation conditions with different pulse overlap ratios for the rectangular shape and micro hole. Test results show that the ablation characteristic according to pulse overlap ratio of titanium alloy seems to be as non-linear type at the different zone of energy fluence. The optimal condition of rectangular shape processing is obtained at the laser peak power 1.3mW, pulse overlap ratio of 90%, beam gap of $1\;{\mu}m$. The micro hole has a good quality from the pulse overlap ratio of 99% at the same laser peak power. With the optimal processing condition, the fine rectangular shape and micro hole without burr and thermal damage are achieved.

열연강판의 드릴링시 공구의 이상상태 검출에 관한 연구 (A Study on the Detection of the Abnormal Tool State in Drilling of Hot-rolled High Strength Steel)

  • 신형곤;김민호;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2000
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is drill wear status monitoring. With the monitoring, we may decide on optimal timing for tool change. The necessity of the detection of tool wear, fracture and the abnormal tool state has been emphasized in the machining process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include drill wear data obtained from drilling experiments conducted on the workpiece. The results are obtained from monitoring of the cutting force and Acoustic Emission (AE) signals, and from the detection of the abnormal tool state with the computer vision system.

  • PDF

Cu 전해도금을 이용한 TSV 충전 기술 (TSV Filling Technology using Cu Electrodeposition)

  • 기세호;신지오;정일호;김원중;정재필
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향 (Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines)

  • 우영민;배충식;이동원
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Defining the $M_{BH}-sigma_*$ relation using the uniformly measured stellar velocity dispersions in the near-IR

  • 강월랑;우종학
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • The correlation between black hole mass and stellar velocity dispersion provides an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller. Expecting that more stellar velocity dispersion measurements will be available using future near-IR facilities, it is crucial to test whether the stellar velocity dispersions measured from the near-IR spectra are consistent with those measured from the optical spectra. For a sample of 35 nearby galaxies, for which optical stellar velocity dispersion measurements and dynamical black hole masses are available, we obtained high quality H-band spectra, using the TripleSpec at the Palomar 5-m Telescope, in order to calibrate the stellar velocity dispersions and define the $M_{BH}-sigma_*$ relation in the near-IR. Based on the spatially resolved kinematics, we correct for the rotation component and determine the luminosity-weighted stellar velocity dispersion of the spheroid component in each galaxy. In this presentation, we will show the comparison between optical and near-IR stellar velocity dispersion measurements and define the $M_{BH}-sigma_*$ relation based on uniformly measured stellar velocity dispersion in the near-IR.

  • PDF

펄스형 Nd:YAG 레이저를 이용한 FTO 식각에 대한 연구 (A Study on the Scribing of FTO using Pulsed Nd:YAG Laser)

  • 김희제;박성준;손민규;이동길;이경준
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1407-1411
    • /
    • 2008
  • In material processing, a laser system with optimal laser parameters has been considered to be significant. Especially, the laser scribing technology is thought to be very important for fabricating DSSC(Dye sensitized solar eel!) modules with good quality. Moreover, the $TEM_{00}$ mode laser beam is the most dominant factor to decide the IPCE(Incident photon to current conversion efficiency) characteristics. In order to get the $TEM_{00}$ mode, a pin-hole is inserted within a simple pulsed Nd:YAG laser resonator. And the spatial field distribution is measured by using three size pin-hole diameters of 2.0, 6.0mm respectively. At that moment, each case has the same laser beam energy by adjusting the discharge voltage and pps(pulse per second). From those results, it is known that the pin-hole size of 2.0mm has the perfect $TEM_{00}$ mode. In addition, at the charging voltage of 1000V, 10pps and the feeding speed of 1.11mm/sec, the SEM photo of FTO(Fluorine-doped tin oxide) thin film layers shows the best scribing trace.

BTA드릴에 의한 SM55C의 심공가공시 최적절삭조건과 공구수명에 관한 연구 (A Study on Optimum Cutting Conditions and Tool Life in Deep Hole Drilling for SM55C by BTA Drill)

  • 장성규;전언찬
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.43-49
    • /
    • 1998
  • The deep hole drilling has an increasing demands because of its wide range applications and its good productivity. The BTA drills are capable of machining for having a large length to diameter ratio in single pass to higher degree of accuracy and surface finish. It's really necessary that the investigation for the deep hole drilling by the BTA drill because its required quality should be satisfied with single pass. This thesis deal with the experimental results obtained during single tube BTA system machining on SM55C steel for different machining conditions. The results of the investigation on the optimum cutting condition selecting and tool life reveals as follows. (1) The optimum cutting condition was cutting speed, V = 42 m/min and feed speed. F = 90 mm/min and the tool life was about 10 meters. (2) Surface roughness was $12\mum$ and the roundness was less using $16mum$single edge BTA drill in testing cutting condition.

  • PDF

다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발 (Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes)

  • 윤승탁;박근
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.