• Title/Summary/Keyword: Hole Expansion

Search Result 135, Processing Time 0.022 seconds

Prediction of fracture in hub-hole expansion process using ductile fracture criteria (연성 파괴 기준을 이용한 허브 홀 확장 과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • The hub hole in a wheel of vehicles usually formed with hole expansion process. Formability of material, especially the hole expansion ratio, is important to produce a fine hub hole. The hub hole expansion process is different from general forming process or bore expansion process in the viewpoint of forming a thick plate. In the hole expansion process of the plate with a hole, as the hole being expanded, the crack is occurred to outward direction at the boundary of a hole. Therefore, it is need to apply the fracture criterion in the hub hole expansion process. In this paper, the hub hole expansion process is simulated with commercial elasto-plastic finite element code, LS-DYNA3D considering some ductile fracture criteria. Fracture mode and hole expansion ratio is compared with respect to the fracture criteria. Analysis results demonstrate that only the effective plastic strain is not adequate to predict the fracture mode in the hub hole. And the analysis results also indicate that the ductile fracture criteria properly predict the fracture mode but hole expansion ratio is different with the result of each other because of their different characteristics.

  • PDF

Prediction of fracture in Hub-hole Expansion Process Using Ductile fracture Criteria (연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko, Y. K.;Lee, J. S.;Huh, H.;Kim, H. K.;Park, S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.601-606
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed for finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio are compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

Prediction of fracture in hub-hole expansion process using new ductile fracture criterion (새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Kim H. K.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

Development of the technique for prediction of the hub-hole crack with the punching effect (펀칭 효과를 고려한 허브홀의 파단 예측기법 개발)

  • Lee J. S.;Ko Y. K.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.362-365
    • /
    • 2005
  • The hub hole is usually formed with a flanging process followed by a blanking process of a ]tole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, hole expansion tests are carried out with respect to various hole conditions to verify the hole condition effect on the hole expansion ratio. The hole of specimens is made by machining or punching. In the case of punching, two different punching clearances are used for making the hole. From the results of test, fracture mechanism of the hole expansion is explained.

  • PDF

Non-linear Correlation Between Hole Edge Condition and Hole Expansion Ratio (구멍 파단면 상태와 구멍확장률 간의 비선형 상관관계 분석)

  • Jeong, B.S.;Cho, W.;Park, S.;Jung, J.;Na, H.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.74-82
    • /
    • 2021
  • Stretch-flangeability, which is the ability of sheet steels to be deformed into complex shapes, is a critical formability property in automobile body parts. In this study, the center-hole for hole expansion test, which is normally used to evaluate the stretch-flangeability of sheet steels, was prepared by both punching and electrical discharge machining (EDM) methods. Hole expansion ratio (HER) of punched hole was far lower than the HER of EDM drilled hole because of damage/crack in hole-edge due to punching process. The effect of hole-edge condition on HER was quantified by mechanical, fractographic and geometric factors. Based on these factors, the empirical equation used to determine HER for various sheet steels was derived using non-linear regression.

The Finite Element Analysis of the Mandrel Shape's Influence on the Residual Stress Distribution by Cold Expansion Method (형상봉의 모양이 홀확장 잔류응력 분포에 미치는 영향에 대한 유한요소해석)

  • Jang, Jae-Soon;Cho, Myoung-Rae;Yang, Won-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.127-133
    • /
    • 2006
  • Cold expansion method is used to protect a fatigue fracture from fastener hole in the structure and aerospace industry. Cold expansion is that an oversized tapered mandrel goes through the hole and produces a compressive residual stress as well as plastic deformation around the hole. Here, mandrel shapes are one of the factors which are influenced on the residual stress distribution by cold expansion method. This paper, according to mandrel shapes (diameter of mandrel, length of mandrel and length of taper), we are performed a finite element analysis of residual stress distribution by cold expansion method. From this study, it has been found that diameter of mandrel and length of taper are an important factor which was generated a low compressive residual stress surround of fastener hole by cold expansion method.

Using the Finite Element Method, 3 Dimensional FE Analysis of Residual Stress by Cold Expansion Method in the Plate Baying Adjacent Holes (인접홀에서 홀확장법 적용시, 유한요소법을 이용한 잔류응력해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.528-532
    • /
    • 2006
  • In the aerospace industry, Cold expansion has been used the most important method that is retarded of crack initiation from fastener hole surface. Cold expansion method(CEM) is that a oversized tapered mandrel goes through the hole in order to develop a compressive residual stress as the passing of the mandrel around the hole. Therefore, because of characteristic of mandrel inserting, Residual Stress Distributions (RSD) are differently generated form Entry, Mid and Exit position of the plate. Also, it is respected that RSD are changed as distances between holes. In this paper, It is performed a FE analysis of RSD by CEM and it is respectively shown RSD in the Entry, Mid and Exit position. It is compared residual stress results form the cold expansion in these two cases: the concurrent CEM and the sequential CEM. From this research, it has been found that compressive residual stress of Entry position is lower than other positions. Also, the concurrent CE of adjacent holes leads to much higher compressive residual stress than the sequential CE. In addition, in the sequential CE case, a compressive RSD of 1 step's hole around is lower than compressive RSD of 2 step's hole around.

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT Specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.890-895
    • /
    • 2002
  • Cold expansion method is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Previous research has just been study about residual stress distribution in the hole surrounding. But, The purpose of this study was to improve the understanding of the residual stress effect in hole surrounding as crack growth from another hole. In this paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen using finite element method. It is further shown that tensile stress increases in proportion to cold expansion ratio in the vicinity of crack. It is thought that stress intensity factor increases with cold expansion ratio.

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.603-608
    • /
    • 2001
  • Recently, cold expansion of fastener holes is commonly used in the aerospace industry to increase the fatigue endurance of airframes. Cold expansion process is used as the retardation of crack initiation in the hole. This treatment leads to an improvement of fatigue behavior due to the compressive residual stresses developed on the hole surface. The residual stress profile depends on the cold expansion ratio. In the present paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen. It is further shown that residual stress increases in proportion to cold expansion ratio. It is thought that crack growth rate increases as cold expansion ratio.

  • PDF

Study on Deformation Characteristics of Hole Expansion Test and Its Applicability (구멍확장시험의 변형특성 및 활용성 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.154-158
    • /
    • 2019
  • The hole expansion tests using conical punch, flat punch or hemispherical punch are widely used for stretch flangeability verification of HSS. In this study, we investigate the strain distribution on the shear edges of the hole expansion test using grid marking and a projector. A small crack at the edge is distributed, resulting in a large gap between the HER and the crack strain. The strain distribution at the edges is irregular due to anisotropy of sheet metal. While an edge perpendicular to the rolling direction indicate a lower strain level compared to an edge parallel to the rolling direction, edge cracks occur at the edge perpendicular to the rolling direction. To predict the manifestation of edge cracks in FE analysis, the result of the hole expansion test with a crack strain measurement may well be a better tool than FLD. In this case, the level of strain and the direction of the edge relative to the rolling direction should be well considered.