• Title/Summary/Keyword: Hole Boundary

Search Result 222, Processing Time 0.02 seconds

Experimental Study on the Flow Characteristic of a Confined Ppray (제한된 공간내 분무의 유동특성 실험)

  • 정선재;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

A Study on Weldability and Prediction of Nugget Shape in Dissimiar Metal Arc Spot Weld (이종 금속의 아크 스폿 용접성 및 접합부 형상 예측에 관한 연구)

  • Kim, Gi Sun;Jang, Gyeong Bok;Gang, Seong Su
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.184-184
    • /
    • 2000
  • In this study, the lap welding between austenitic stainless steel and carbon steel was carried out using arc spot welding process and weldability of welded specimens was estimated. From the tensile-shear strength test, micro Vickers hardness test, and microstructure observation, specimen of 6.5mm(hole of upper plate) showed the best results in terms of tensile-shear strength and nugget shape. And there was an unmixed zone in fusion boundary between the carbon steel base metal and bulk weld metal. This zone had very thin width with the hard microstructure. The shape of weld nugget in arc spot welding of dissimilar metal welds was predicted by searching thermal history of a weld joint through a three-dimensional finite element model. From the numerical analysis, predicted the shape of weld nugget showed good agreement with the experiment(Received August 24, 1999)

A Study on Weldability and Prediction of Nugget Shape in Dissimilar Metal Arc Spot Weld (이종 금속의 아크 스폿 용접성 및 접합부 형상 예측에 관한 연구)

  • 김기순;장경복;강성수
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • In this study, the lap welding between austenitic stainless steel and carbon steel was carried out using arc spot welding process and weldability of welded specimens was estimated. From the tensile-shear strength test, micro Vickers harness test, and microstructure observation, specimen of $psi6.5mm$(hole of upper plate) showed the best results in terms of tensile-shear strength and nugget shape. And there was an unmix zone in fusion boundary between the carbon steel base metal and bulk weld metal. This zone had very width with the hard microstructure. The shape of weld nugget in arc spot welding of dissimilar metal melds was predicted by searching thermal history of a weld joint through a three-dimensional finite element model. From the numerical analysis, predicted the shape of weld nugget showed good agreement with the experiment.

  • PDF

The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle - ($6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 -)

  • Kim, Jong-Do;Park, Hyun-Joon
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Mechanical behavior of coiled tubing over wellhead and analysis of its effect on downhole buckling

  • Zhao, Le;Gao, Mingzhong;Li, Cunbao;Xian, Linyun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.199-210
    • /
    • 2022
  • This study build finite element analysis (FEA) models describing the bending events of coiled tubing (CT) at the wellhead and trips into the hole, accurately provide the state of stress and strain while the CT is in service. The bending moment and axial force history curves are used as loads and boundary conditions in the diametrical growth models to ensure consistency with the actual working conditions in field operations. The simulation diametrical growth results in this study are more accurate and reasonable. Analysis the factors influencing fatigue and diametrical growth shows that the internal pressure has a first-order influence on fatigue, followed by the radius of the guide arch, reel and the CT diameter. As the number of trip cycles increase, fatigue damage, residual stress and strain cumulatively increase, until CT failure occurs. Significant residual stresses remain in the CT cross-section, and the CT exhibits a residual curvature, the initial residual bending configuration of CT under wellbore constraints, after running into the hole, is sinusoidal. The residual stresses and residual bending configuration significantly decrease the buckling load, making the buckling and buckling release of CT in the downhole an elastic-plastic process, exacerbating the helical lockup. The conclusions drawn in this study will improve CT models and contribute to the operational and economic success of CT services.

View Synthesis Error Removal for Comfortable 3D Video Systems (편안한 3차원 비디오 시스템을 위한 영상 합성 오류 제거)

  • Lee, Cheon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.36-42
    • /
    • 2012
  • Recently, the smart applications, such as smart phone and smart TV, become a hot issue in IT consumer markets. In particular, the smart TV provides 3D video services, hence efficient coding methods for 3D video data are required. Three-dimensional (3D) video involves stereoscopic or multi-view images to provide depth experience through 3D display systems. Binocular cues are perceived by rendering proper viewpoint images obtained at slightly different view angles. Since the number of viewpoints of the multi-view video is limited, 3D display devices should generate arbitrary viewpoint images using available adjacent view images. In this paper, after we explain a view synthesis method briefly, we propose a new algorithm to compensate view synthesis errors around object boundaries. We describe a 3D warping technique exploiting the depth map for viewpoint shifting and a hole filling method using multi-view images. Then, we propose an algorithm to remove boundary noises that are generated due to mismatches of object edges in the color and depth images. The proposed method reduces annoying boundary noises near object edges by replacing erroneous textures with alternative textures from the other reference image. Using the proposed method, we can generate perceptually inproved images for 3D video systems.

  • PDF

Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement (신뢰 영역 검출 및 시차 지도 재생성 기반 경계 보존 스테레오 매칭)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.132-140
    • /
    • 2016
  • In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.