• Title/Summary/Keyword: Holding pressure time

Search Result 102, Processing Time 0.026 seconds

On the Fabrication of Porous 316L Stainless Steel by Spark Plasma Sintering (방전플라즈마 소결에 의한 316L 스텐레스강 다공체 재료 제조에 관한 연구)

  • 권영순;김성기;김현식;김환태;최성일;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • SPS(Spark Plasma Sintering ) is known to be an excellent sintering method for porous materials. In the present work an attempt has been made of fabricating porous 316L Stainless steel with good mechanical properties by using controlled SPS process Porosity was 21%~53% at sintering temperature of $600^{\circ}C$~100$0^{\circ}C$ The limit of porosity with available mechanical strength was 30% at given experimental conditions. Porosity can be controlled by manipulating the intial height of the compact by means of the supporter and punch length. The applied pressure can be exerted entirely upon the supporter, giving no influence on the specimen. The specimen is then able to be sintered pressurelessly. In this case porosity could be controlled from 38 to 45% with good mechanical strength at sintering temperature of 90$0^{\circ}C$. As the holding time increased, neck between the particles grew progressively, but shrinkage of the specimen did not occur, implying that the porosity remained constant during the whole sintering process.

The effect of step heat treatment in the critical current density of BSCCO 2223 tapes (BSCCO 2223선재의 임계전류밀도에 영향을 미치는 단계별 열처리의 효과)

  • 박성창;유재무;고재웅;김영국;김철진
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.90-93
    • /
    • 2002
  • The sintering process of BSCCO 2223 tapes is a complex process that is very sensitive to parameters, such as temperature, oxygen partial pressure, heating and cooling rate and holding time. During the first heat treatment, 2212 phase of precursor powder is partially transformed into 2223 phase and some residual secondary phases, such as $(Bi,Pb)_2$$Sr_2$CuO/sub y/(2201), $(Ca,Sr)_2$CuO/sub y/(2/1AEC), (Ca,Sr)/sub 14/Cu/sub 24/O/sub 41/(14/24 AEC) etc. The secondary phases are difficult to be removed from the BSCCO 2223 matrix on the heat treatment. These secondary phases degrade the critical current density. In order to minimize the amount and size of alkaline earth cuprate(AEC) particles step heat treatment is applied during the first heat treatment under the varying atmosphere. Experimental results showed that by adapting the step heat treatment process, the amount and particle size of the secondary phases in the final tapes are decreased. Consequently, the BSCCO 2223grain texture and Jc properties are improved.

  • PDF

Preliminary Investigation on Joining Performance of Intermediate Heat Exchanger Candidate Materials of Very High Temperature Reactor(VHTR) by Vacuum Brazing (진공 브레이징을 이용한 고온가스냉각로 중간 열교환기 후보재료의 접합성능에 관한 예비시험)

  • Kim, Gyeong-Ho;Kim, Gwang-Ho;Lee, Min-Gu;Kim, Heung-Hoe;Kim, Seong-Uk;Kim, Suk-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.195-197
    • /
    • 2005
  • An intermediate heat exchanger(IHX) is a key component in a next-generation VHTR with process heat applications such as hydrogen production and also for an indirect gas turbine system. Therefore, high temperature brazing with nickel-based filler metal(MBF-15) was carried out to study the joining characteristic(microstucture, joining strength) of nickel-based superalloy(Haynes 230) by vacuum brazing. The experimental brazing was carried out at the brazing process, an applied pressure of about 0.74Mpa and the three kinds of brazing temperatures were 1100, 1150, and $1190^{\circ}C$ with holding time 5 minute. It's joining phenomena were analyzed by optical microscopy and scanning electron microscopy with EPMA. The results of microstructure in the centre-line region of a joint brazed with MBF-15 show a typical ternary eutectic of v-nickel, nickel boride and chromium boride.

  • PDF

Effect of Hot Isostatic Pressing on Elimination of Internal Defects in IN738LC Superalloy for Gas Turbine Blade (HIP 처리에 의한 가스터빈 블레이드용 IN738LC 초합금의 내부결함 소멸 효과)

  • Park, Young-Kyu;Kim, Soo-Hyung;Kim, Jae-Cheol;Lee, Young-Chan;Kim, Doo-Soo;Choi, Cheol;Kim, Gil-Moo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.427-432
    • /
    • 1999
  • Most investment castings contain some porosities and microcavities. In this study, we investigated the elimination trends of various internal defects in IN738LC investment castings for industrial gas turbine blade by hot isostatic pressing. The results showed that cylindrical defects which are under $0.6mm{\Phi}{\times}7mm$ size are mostly eliminated and aspect ratio of defects is more sensitive factor than their cross section shape in removing these defects. Increasing hot isostatic pressure and holding time doesn't affect the elimination trend of cylindrical defects over $0.6mm{\Phi}{\times}7mm$ size because first step(plastic deformation) of HIP densification doesn't occur under these HIPping conditions.

  • PDF

Analysis of Bonding Characteristics of a T-shape Structure Fabricated by Superplastic Hydroforming and Diffusion Bonding using two Ti-3Al-2.5V tubes (Ti-3Al-2.5V 튜브의 초소성 하이드로포밍과 확산접합으로 제조된 T형 구조물의 접합 특성 분석)

  • Yoo, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.49-55
    • /
    • 2018
  • A T-shape structure was manufactured by the superplastic forming and diffusion bonding process using two Ti-3Al-2.5V alloy tubes. A Ti-3Al-2.5V tube was prepared for the hydroforming in the superplastic condition until it reaches a surface area such as a roof welded in the hole of another Ti-3Al-2.5V tube. Afterward, the superplastic forming process and the diffusion bonding process were carried out simultaneously until the appropriate bonding along the interface area of two Ti-3Al-2.5V tubes was obtained. The bonding qualities were different at each location of the entire interface according to the applied process conditions such as strain, pressure, temperature, holding time, geometries, etc. The microstructures of bonding interface have been observed to understand the characteristics of the applied processes in this study.

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Structure/Property of Adhesives and Adhesion Performance (접착제의 구조물성과 접착특성)

  • Hiroshi Mizumachi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • Most of the materials used in various industrial fields and also in our daily life are multi-component materials or composite materials, and it is well known that there are many cases where adhesion between the constituents within the bonded systems plays an important role. There are various types of performance evaluation tests for the bonded materials, among which tests for evaluating the bond performance under various conditions may be regarded as the most interesting ones for those engaged in work related to adhesion. I have studied on the mechanism of adhesion form the rheological standpoint with my colleagues, including some students from Korea, and I am very happy to be able to have a talk on some of our research works. In Japan, the so-called "adhesives" are usually classified into two categories;adhesives and pressure sensitive adhesives (PSA). Adhesives are the materials which solidify after bonding and are after used as the structural adhesives because the adhesive strength is comparatively strong. On the other hand, the pressure sensitive adhesives never solidify and are used as PSA tapes, labels or decals. About the adhesives, we have examined the dependence of adhesive strength(shear, tensile, peel) upon both temperature and rate of deformation, and found out some empirical rules which are applicable to most of the adhesive systems. We have also developed a simplified theory of adhesion, which is deseribed in terms of mechanical equivalent mode1 and a few failure criteria. Although some of the common rules can be accounted for according to this theory, it must be pointed out that a fracture mechanical approach ms inevitable especially in the region where the meehanical relaxation time of the adhesive is extremely large [W. W. Lim and H. Mizumachi]. About the pressure sensitive adhesives, we have studied on the PSA performance (peel, tack, holding power) as a function of both the viscoelastic properties and surface chemical properties of the materials, and found out some rules, and again we have developed a theory which deseribes the mechanism. And in addition, we have studied on the miscibility between linear polymers and oligomers, because PSA is generally manufactured by blending gums and tackifier resins. Many phase diagrams have been found and some of them have been analyzed on thermodynamic basis, and it became evident that the miscibility is a very important factor in PSA [H. J. Kin and H. Mizumachi]. In this presentation, I want to emphasize the fact that the adhesion performance is closely related to the structure/property of the adhesives.adhesives.

  • PDF

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Effect of Hydride Reorientation on Delayed Hydride Cracking In Zr-2.5Nb Tubes

  • Yun Yeo Bum;Kim Young Suk;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.529-536
    • /
    • 2003
  • The objective of this study is to investigate the reorientation of hydrides with applied stress intensity factor, the peak temperature and the time when to apply the stress intensity factor in a Zr-2.5Nb pressure tube during its thermal cycle treatment. Cantilever beam (CB) specimens with a notch of 0.5 mm in depth made from the Zr-2.5Nb tube were subjected to electrolytic hydrogen charging to contain 60 ppm H and then to a thermal cycle involving heating to the peak temperature of either 310 or $380^{\circ}C$, holding there for 50 h and then cooling to the test temperature of $250^{\circ}C$. The stress intensity factor of either 6.13 or $18.4\;MPa\sqrt{m}$ was applied at the beginning of the thermal cycle, at the end of the hold at the peak temperatures and after cooling to the test temperature, respectively. The reorientation of hydrides in the Zr-2.5Nb tube was enhanced with the increased peak temperature and applied stress intensity factor. Furthermore, when the CB specimens were subjected to $18.4\;MPa\sqrt{m}$ from the beginning of the thermal cycle, the reoriented hydrides occurred almost all over the Zr-2.5Nb tube, surprisingly suppressing the growth of a DHC crack. In contrast, when the CB specimens were subjected to the stress intensity factor at the test temperature, little reorientation of hydrides was observed except the notch region, leading the Zr-2.5Nb to grow a large DHC crack. Based on the correlation between the reorientation of hydrides and the DHC crack growth, a governing factor for DHC is discussed along with the feasibility of the Kim's DHC model.