• 제목/요약/키워드: Holding Force

검색결과 543건 처리시간 0.02초

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

3차원 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구 (An Improved Scheme for the Blank Holding Force in 3-D Sheet Metal Forming Analysis)

  • 최태훈;허훈;이충호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.93-97
    • /
    • 1997
  • Since the modified membrane element has the same external appearance as the ordinary membrane element, it is not able to apply the thickness variation of sheet metal in the blank holder to the contact treatment and the equally distributed blank holding force should be inevitably imposed on sheet metal along the periphery regardless of the contact status. But sheet metal does not contact with the blank holder at the periphery, nor the blank holding force is distributed uniformly along the boundary. To impose the blank holding force properly, the scheme is improved so that the blank holding force at each node imposed on sheet metal is dependent on the calculated thickness derivation and a state of equilibrium with the total blank holding force. The validity of the improved scheme is demonstrated with the simulation of cylindrical and rectangular cup deep drawing.

  • PDF

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.394-396
    • /
    • 2007
  • In this study, in order to see effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions, such are lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and performed the friction test in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases maximum 30% as the blank holding force and the drawing speed are increased to 2.5kN and 1500mm/min, respectively.

  • PDF

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on the Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.381-385
    • /
    • 2007
  • In order to examine the effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions such as lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and the friction tests are performed, in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases as the blank holding force, the drawing speed and lubricant viscosity increase together or individually.

굽힘이 고려된 개량 박막 유한요소를 사용한 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구 (An Improved Scheme for the Blank Holding Force in Sheet Metal Forming Analysis using the Modified Membrane Finite Element Considering Bending Effect)

  • 최태훈;허훈
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.347-355
    • /
    • 1999
  • The paper is concerned with an improved scheme for application of the blank holding force in order to take account of the thickness distribution in the sheet material of the flange region. The scheme incorporates with a modified membrane finite element method for planar anisotropic materials. The new scheme proposed two coefficients α and βto calculate the compressive stress in the sheet metal due to the blank holding force, which should be determined properly for accurate analysis. The effect of αand βon the blank holding force distribution and the deformed shape is investigated with simulation of rectangular cup deep drawing processes by changing parameter values.

  • PDF

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향 (Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal)

  • 이준형;정완진;김종호
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

블랭크 홀딩력 조절을 통한 성형성 향상에 관한 수치적 연구 (A Numerical Study on formability improvement by adjusting blank holding force)

  • 최현석;정완진
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2016
  • In sheet metal forming process, drawing is typical process. And the key factor of drawing is blank holding force (BHF) A low BHF can cause wrinkling, whereas a high BHF can cause fracture during a deep drawing process. Thus, formability can be influenced by application appropriate BHF. In this study, a variable blank holding force (VBHF) is applied to extend the forming limit by avoiding both wrinkling and fracture. To determine VBHF in drawing process, numerical simulations and statistical analysis are carried out using commercial FEM software.

프레스가공의 최적 성형범위에 미치는 강판특성 및 윤활조건의 영향 (The effect of sheet steel properties and lubrication on the optimal range of blank holding force of stamping processes)

  • 박기철;최원집
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.335-346
    • /
    • 1994
  • The effect of sheet steel properties and lubrication on the optimal range of blank holding force (BHF) was investigated by means of the model die stamping of various sheet steels. The optimal range of blank holding force was expressed as the range between the lower BHF at flange wrinkling and the upper BHF at local necking. It showed that mechanical properties, thickness of sheet steel and lubrication condition were important factors affecting the optimal range of BHF in sheet steels. Especially, lubrication played an important role in the case of coasted sheet steels.

  • PDF