• Title/Summary/Keyword: Hoffman 3D brain phantom

Search Result 12, Processing Time 0.027 seconds

Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer (적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성)

  • Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

Development and Evaluation of the Usefulness for Hoffman Brain Phantom Based on 3D Printing Technique (3D 프린팅 기법 기반의 Hoffman Brain 팬텀 개발 및 유용성 평가)

  • Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.441-446
    • /
    • 2019
  • The purpose of this paper is to recognize the usefulness of the Phantom produced with 3D printing technology by reproducing the original phantom with 3D printing technology. Using CT, we obtained information from the original phantom. The acquired file was printed by the SLA method of ABS materials. For inspection, SPECT/CT was used to obtain images. We filled the both Phantom with a solution mixed with 99mTcO4 1 mCi in 1 liter of water and acq uired images in accordance with the standard protocol. Using Image J, the SNR for each slice of the image was obtained. As a reference images, AC images were used. For the analysis of acquired images, ROI was set in the White mater and Gray mater sections of each image, and the average Intensity Value within the ROI were compared. According to the results of this study, 3D printed phantom's SNR is about 0.1 higher than the conventional phantom. And the ratio of Intensity Value was shown in the original 1 : 3.4, and the printed phantom was shown to be 1 : 3.2. Therefore, if Calibration Value is applied, It is assumed that it can be used as an alternative to the original.

Usefulness of Image Registration in Brain Perfusion SPECT (Brain Perfusion SPECT에서 Image Registration의 유용성)

  • Song, Ho-June;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.

  • PDF

The Evaluation of Dynamic Continuous Mode in Brain SPECT (Brain SPECT 검사 시 Dynamic Continuous Mode의 유용성 평가)

  • Park, Sun Myung;Kim, Soo Yung;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Purpose During Brain SPECT study, critical factor for proper study with $^{99m}Tc-ECD$ or $^{99m}Tc-HMPAO$ is one of the important causes to patent's movement. It causes both improper diagnosis and examination failure. In this study, we evaluated the effect of Dynamic Continuous Mode Acquisition compared to Step and Shoot Mode to raise efficacy and reject the data set with movement, as well as, be reconstructed in certain criteria. Materials and Methods Deluxe Jaszczak phantom and Hoffman 3D Brain phantom were used to find proper standard data set and exact time. Step and Shoot Mode and Dynamic Continuous Mode Acquisition were performed with SymbiaT16. Firstly, Deluxe Jaszczak phantom was filled with $Na^{99m}TcO_4$ 370 MBq and obtained in 60 minutes to check spatial resolution compared with Step and Shoot Mode and Dynamic Continuous Mode. The second, the Hoffman 3D Phantom filled with $Na^{99m}TcO_4$ 74 MBq was acquired for 15 Frame/minutes to evaluate visual assessment and quantification. Finally, in the Deluxe Jaszczak phantom, Spheres and Rods were measured by MI Apps program as well as, checking counts with the frontal lobe, temporal lobe, occipital lobe, cerebellum and hypothalamus parts was performed in the Hoffman 3D Brain Phantom. Results In Brain SPECT Study, using Dynamic Continuous Mode rather than current Step and Shoot Mode, we can do the reading using the 20 to 50 % of the acquired image, and during the test if the patient moves, we can remove unneeded image to reduce the rate of restudy and reinjection. Conclusion Dynamic Continuous Mode in Brain study condition enhances effects compared to Step and Shoot Mode. And also is powerful method to reduce reacquisition rate caused by patient movement. The findings further indicate that it suggest rejection limit to maintain clinical value with certain reconstruction factors compared with Tomo data set. Further examination to improve spatial resolution, SPECT/CT should be the answer for that.

  • PDF

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

Comparison of Attenuation Correction Methods for Brain SPECT Ima (Brain SPECT 영상의 Attenuation Correction 방법들에 대한 비교)

  • Jo, Jin U;Kim, Chang Ho;Na, Soo Kyung;Lee, Gui Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2012
  • Purpose : The purpose of this study was to compare count between Chang's method and CT-based attenuation correction (AC-CT) among the attenuation correction (AC) methods for non-attenuation correction (AC-non) images of Brain SPECT (Single Photon Emission Computed Tomography). Materials and Methods : We injected $^{99m}Tc$ 37Mbq in a Hoffman 3D phantom filled with distilled water in the phantom study, and injected intravenously $^{99m}Tc$-HMPAO 740Mbq in a normal volunteer in the patient study, and then obtained Brain SPECT images with Symbia T6 of Siemens and conducted quantitative brain analysis. Transverse images to which each method was applied were rebuilt at the same position, and 6 regions of interest (ROI) were drawn on each of Slice No. 10, 20 and 30 and then the counts of AC-non, AC-CT and Chang's method were compared. Results : The mean counts of AC-non, AC-CT and Chang's method were $4606.8{\pm}511.3$, $16794.6{\pm}2429.4$, and $8752.6{\pm}896.5$, respectively, in the phantom study and $5460.8{\pm}519.6$, $15320{\pm}1171.6$ and $12795{\pm}1422.1$, respectively, in the patient study. In the phantom study, the ratio of AC-CT to AC-non was 3.70 and the ratio of Chang's method to AC-non was 1.92, and in the patient study, they were 2.85 and 2.38, respectively. Conclusion : From this study, we found that AC-CT makes higher AC than Chang's method. In addition, when Chang's method was used, AC in the patient study was higher than that in the phantom study. These results need to be considered also in other examinations.

  • PDF

The Usefulness of LEUR Collimator for 1-Day Basal/Acetazolamide Brain Perfusion SPECT (1-Day Protocol을 사용하는 Brain Perfusion SPECT에서 LEUR 콜리메이터의 유용성)

  • Choi, Jin-Wook;Kim, Soo-Mee;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • Purpose: Basal/Acetazolamide-challenged brain perfusion SPECT is very useful to assess cerebral perfusion and vascular reserve. However, as there is a trade off between sensitivity and spatial resolution in the selection of collimator, the selection of optimal collimator is crucial. In this study, we examined three collimators to select optimal one for 1-day brain perfusion SPECT. Materials and Methods: Three collimators, low energy high resolution-parallel beam (LEHR-par), ultra resolution-fan beam (LEUR-fan) and super fine-fan beam (LESFR-fan), were tested for 1-day imaging using Triad XLT 9 (TRIONIX). The SPECT images of Hoffman 3D brain phantom filled with 99mTc of 170 MBq and a normal volunteer were acquired with a protocol of 50 kcts/frame and detector rotation of 3 degree. Filterd backprojection (FBP) reconstruction with Butterworth filter (cut off frequencies, 0.3 to 0.5) was performed. The quantitative and qualitative assessments for three collimators were performed. Results: The blind tests showed that LESFR-fan provided the best image quality for Hoffman brain phantom and the volunteer. However, images for all the collimator were evaluated as 'acceptable'. On the other hand, in order to meet the equivalent signal-to-noise ratio (SNR), total acquisition time or radioactivity dose for LESFR-fan must have been increased up to almost twice of that for LEUR-fan and LEHR-par. The volunteer test indicated that total acquisition time could be reduced approximately by 10 to 14 min in clinical practice using LEUR-fan and LEHR-par without significant loss on image quality, in comparison with LESFR-fan. Conclusion: Although LESFR-fan provides the best image quality, it requires significantly more acquisition time than LEUR-fan and LEHR-par to provide reasonable SNR. Since there is no significant clinical difference between three collimators, LEUR-fan and LEHR-par can be recommended as optimal collimators for 1-day brain perfusion imaging with respect to image quality and SNR.

  • PDF

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF