• Title/Summary/Keyword: Hmm

Search Result 966, Processing Time 0.251 seconds

A Study on VQ/HMM using Nonlinear Clustering and Smoothing Method (비선형 집단화와 완화기법을 이용한 VQ/HMM에 관한 연구)

  • 정희석
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.95-98
    • /
    • 1998
  • 본 논문에서는 이산적인 HMM(Hidden Markov Model)을 이용한 고립단어 인식 시스템에서 입력특징 벡터의 변별력을 향상시키기 위해 수정된 집단화 알고리듬을 제안하므로써 K-means나 LBG 알고리듬을 이용한 기존의 HMM에 비해 2.16%의 인식율을 향상시켰다. 또한 HMM학습과정에서 불충분한 학습데이타로 인해 발생되는 인식율저하의 문제를 해소하기 위해 개선된 smoothing 기법을 제안하므로써 화자독립 실험에서 3.07%의 인식율을 향상시켰다. 본 논문에서 제안한 두가지 알고리듬을 모두 적용하여 최종적으로 실험한 VQ/HMM에서는 기존의 방식에 비해 화자독립 인식실험 결과 평균 인식율이 4.66% 개선되었다.

  • PDF

On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm (Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구)

  • 홍영표;장춘서
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

Off-line Character Modeling using HMM (HMM 기반의 오프라인 필기 모델)

  • Sin, Bong-Kee
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.337-340
    • /
    • 2000
  • 음성 인식 및 온라인 필기 인식기 모델로 널리 알려진 은닉 마르코프 모델(HMM)을 오프라인에 적용하려는 시도는 있었지만 아직까지 만족할 만한 성과는 찾아보기 어렵고 인식률도 신경망 등 다른 방법에 의한 시스템에 미치지 못하는 실정이다. 본 연구에서는 온라인 필기 모델 HMM을 오프라인 필기인식에 활용하는 방법 한 가지와 순수하게 오프라인 필기 모델로서 제안된 2D HMM을 기술한다. 두 방법 모두 기존의 HMM 모델링 틀에 기초를 두고 개발하였으며 다양한 국소 변형을 해석하기 위해 동적 계획법에 기반한 알고리즘을 응용하였다. 본 논문에서는 두 가지 독립적인 아이디어 제안에 의의를 두었으며 주요 아이디어만을 간략하게 기술하였다.

  • PDF

Analysis of the Number of States and Mixtures for HMM Modeling (HMM 모델링을 위한 HMM의 State수와 Mixture수 분석)

  • 박미나;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.658-660
    • /
    • 2002
  • 본 논문에서는 음성인식과 온라인 필기인식에서 우수한 성능을 보이는 은닉 마르코프(HMM)의 모델링의 문제점을 다룬다. HMM은 파라미터의 수가 클수록 자기 데이터에 대해 잘 모델링하는 특징으로 음성인식과 온라인 필기인식등에서 많이 쓰이고 있다. 그러나 그러한 특징으로 인해 해당 클래스 데이터가 아닌 다른 클래스 데이터에 대해서도 파라미터의 수가 클수록 잘 모델링하는 단점이 나타났다. 이에 본 연구에서는 대상 데이터를 분석하여 state의 수와 mixture의 수를 조정하여 가장 적절한 HMM의 구조의 파라미터를 구하는 가능성을 본다.

  • PDF

Text Dependent Speech Enhancement based L-R HMM (L-R HMM 갖는 문장 종속 음성 향상 방법)

  • Lee J.J.;Lee K.Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.61-64
    • /
    • 2002
  • 본 논문에서는 Left-Right HMM 모델에 기초를 둔 음질 향상 방법을 제안하였다. 기존 HMM에 기초를 둔 음질 향상 방법은 ergodic HMM에 기초를 두고 음질을 향상시켰다. 본 논문에서는 Left-Right HMM이 현재 상태에서 다음상태로만 변하는 성질을 이용하여 현재의 상태를 결정하여 다음 프레임에서 현재와 다음 상태에서만 계산을 하는 방법을 사용하였다. 그 결과 기존의 방법에 비해 많은 시간을 줄일 수 있었다.

  • PDF

The Study on the Integration method using TDNN and HMM for Korean Digit Speech Recognition (한국어 숫자음 인식을 위한 TDNN과 HMM의 결합방법에 관한 연구)

  • 서원택;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.85-90
    • /
    • 2001
  • 본 논문에서는 한국어 숫자음 인식을 위한 시간 지연 신경망(Time delay neural network-TDNN)과 은닉 마르코프 모델(Midden Markov Model-HMM)의 결합 방법에 대해서 연구하였고 그 성능을 측정하였으며, 기존의 시스템과 비교 평가하였다. 이 알고리즘은 TDNN과 HMM의 구조적인 결합에 기반하고 있는데 TDNN의 두번째 은닉층의 출력이 HMM의 입력으로 들어가도록 구성되었다. 그러면 HMM은 TDNN의 출력으로 각 단어에 대해서 훈련과정을 거치게 된다. 이렇게 구성된 인식알고리즘은 TDNN의 뛰어난 단기간(Short-time)분류 기능과 HMM의 시간 정렬(time-warping) 능력을 동시에 갖게 된다. 위의 과정을 컴퓨터 시뮬레이션을 이용하여 구현하였으며, 한사람의 음성을 녹음하여 실험한 결과 기존의 TDNN만으로 만들어진 인식기보다는 3%, HMM만으로 구성된 인식기 보다는 5.7% 나은 성능을 얻을 수 있었다.

  • PDF

Reduction of Number of Free Parameters in Segmental-feature HMM (분절 특징 HMM의 매개 변수 수의 감소에 관한 연구)

  • 윤영선;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.48-52
    • /
    • 2000
  • 음성 인식에 많이 사용되는 HMM (hidden Markov model)을 개선하기 위하여 분절 특징을 사용한 분절 특징 HMM은 성능이 우수하다고 발표되었다. 그러나, 분절 길이가 증가하고 회귀 차수가 놓아질수록 분절 특징 HMM을 표현하는 매개 변수의 수도 같이 증가된다. 따라서, 본 연구에서는 상태에서 관측 가능한 분절의 분산을 분절 내의 모든 프레임에 대하여 공통적으로 표현하는 고정 분산 방법을 통하여 성능의 저하 없이 매개 변수의 수를 줄이도록 시도하였다. 실험 결과, 두 혼합 밀도인 경우 고정 분산을 이용한 분절 특징 HMM의 성능과 시변 분산을 이용한 성능의 차이가 거의 없어, 제안된 방법의 유효성을 입증하였다.

  • PDF

A Study on the Speaker Adaptation of a Continuous Speech Recognition using HMM (HMM을 이용한 연속 음성 인식의 화자적응화에 관한 연구)

  • Kim, Sang-Bum;Lee, Young-Jae;Koh, Si-Young;Hur, Kang-In
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 1996
  • In this study, the method of speaker adaptation for uttered sentence using syllable unit hmm is proposed. Segmentation of syllable unit for sentence is performed automatically by concatenation of syllable unit hmm and viterbi segmentation. Speaker adaptation is performed using MAPE(Maximum A Posteriori Probabillity Estimation) which can adapt any small amount of adaptation speech data and add one sequentially. For newspaper editorial continuous speech, the recognition rates of adaptation of HMM was 71.8% which is approximately 37% improvement over that of unadapted HMM

  • PDF

English Phoneme Recognition using Segmental-Feature HMM (분절 특징 HMM을 이용한 영어 음소 인식)

  • Yun, Young-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.167-179
    • /
    • 2002
  • In this paper, we propose a new acoustic model for characterizing segmental features and an algorithm based upon a general framework of hidden Markov models (HMMs) in order to compensate the weakness of HMM assumptions. The segmental features are represented as a trajectory of observed vector sequences by a polynomial regression function because the single frame feature cannot represent the temporal dynamics of speech signals effectively. To apply the segmental features to pattern classification, we adopted segmental HMM(SHMM) which is known as the effective method to represent the trend of speech signals. SHMM separates observation probability of the given state into extra- and intra-segmental variations that show the long-term and short-term variabilities, respectively. To consider the segmental characteristics in acoustic model, we present segmental-feature HMM(SFHMM) by modifying the SHMM. The SFHMM therefore represents the external- and internal-variation as the observation probability of the trajectory in a given state and trajectory estimation error for the given segment, respectively. We conducted several experiments on the TIMIT database to establish the effectiveness of the proposed method and the characteristics of the segmental features. From the experimental results, we conclude that the proposed method is valuable, if its number of parameters is greater than that of conventional HMM, in the flexible and informative feature representation and the performance improvement.

Study On The Robustness Of Face Authentication Methods Under illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구)

  • Ko Dae-Young;Kim Jin-Young;Na Seung-You
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.9-16
    • /
    • 2005
  • This paper focuses on the study of the face authentication system and the robustness of fact authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as fellows; PCA(Principal Component Analysis), GMM(Gaussian Mixture Modeis), 1D HMM(1 Dimensional Hidden Markov Models), Pseudo 2D HMM(Pseudo 2 Dimensional Hidden Markov Models). Experiment results involving an artificial illumination change to fate images are compared with each other. Face feature vector extraction based on the 2D DCT(2 Dimensional Discrete Cosine Transform) if used. Experiments to evaluate the above four different fate authentication methods are carried out on the ORL(Olivetti Research Laboratory) face database. Experiment results show the EER(Equal Error Rate) performance degrade in ail occasions for the varying ${\delta}$. For the non illumination changes, Pseudo 2D HMM is $2.54{\%}$,1D HMM is $3.18{\%}$, PCA is $11.7{\%}$, GMM is $13.38{\%}$. The 1D HMM have the bettor performance than PCA where there is no illumination changes. But the 1D HMM have worse performance than PCA where there is large illumination changes(${\delta}{\geq}40$). For the Pseudo 2D HMM, The best EER performance is observed regardless of the illumination changes.