• 제목/요약/키워드: Histone deacetylase-6

검색결과 54건 처리시간 0.024초

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권6호
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

Effects of Macrolide and Corticosteroid in Neutrophilic Asthma Mouse Model

  • An, Tai Joon;Rhee, Chin Kook;Kim, Ji Hye;Lee, Young Rong;Chon, Jin Young;Park, Chan Kwon;Yoon, Hyoung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권1호
    • /
    • pp.80-87
    • /
    • 2018
  • Background: Asthma is a disease of chronic airway inflammation with heterogeneous features. Neutrophilic asthma is corticosteroid-insensitive asthma related to absence or suppression of $T_H2$ process and increased $T_H1$ and/or $T_H17$ process. Macrolides are immunomodulatory drug that reduce airway inflammation, but their role in asthma is not fully known. The purpose of this study was to evaluate the role of macrolides in neutrophilic asthma and compare their effects with those of corticosteroids. Methods: C57BL/6 female mice were sensitized with ovalbumin (OVA) and lipopolysaccharides (LPS). Clarithromycin (CAM) and/or dexamethasone (DXM) were administered at days 14, 15, 21, 22, and 23. At day 24, the mice were sacrificed. Results: Airway resistance in the OVA+LPS exposed mice was elevated but was more attenuated after treatment with CAM+DXM compared with the monotherapy group (p<0.05 and p<0.01). In bronchoalveolar lavage fluid study, total cells and neutrophil counts in OVA+LPS mice were elevated but decreased after CAM+DXM treatment. In hematoxylin and eosin stain, the CAM+DXM-treated group showed less inflammation additively than the monotherapy group. There was less total protein, interleukin 17 (IL-17), interferon ${\gamma}$, and tumor necrosis factor ${\alpha}$ in the CAM+DXM group than in the monotherapy group (p<0.001, p<0.05, and p<0.001). More histone deacetylase 2 (HDAC2) activity was recovered in the DXM and CAM+DXM challenged groups than in the control group (p<0.05). Conclusion: Decreased IL-17 and recovered relative HDAC2 activity correlated with airway resistance and inflammation in a neutrophilic asthma mouse model. This result suggests macrolides as a potential corticosteroid-sparing agent in neutrophilic asthma.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Differential expression of tescalcin by modification of promoter methylation controls cell survival in gastric cancer cells

  • Tae Woo Kim;Seung Ro Han;Jong-Tae Kim;Seung-Min Yoo;Myung-Shin Lee;Seung-Hoon Lee;Yun Hee Kang;Hee Gu Lee
    • Oncology Letters
    • /
    • 제41권6호
    • /
    • pp.3464-3474
    • /
    • 2019
  • The EF-hand calcium binding protein tescalcin (TESC) is highly expressed in various human and mouse cancer tissues and is therefore considered a potential oncogene. However, the underlying mechanism that governs TESC expression remains unclear. Emerging evidence suggests that TESC expression is under epigenetic regulation. In the present study, the relationship between the epigenetic modification and gene expression of TESC in gastric cancer was investigated. To evaluate the relationship between the methylation and expression of TESC in gastric cancer, the methylation status of CpG sites in the TESC promoter was analyzed using microarray with the Illumina Human Methylation27 BeadChip (HumanMethylation27_270596_v.1.2), gene profiles from the NCBI Dataset that revealed demethylated status were acquired, and real-time methylation-specific PCR (MSP) in gastric cancer cells was conducted. In the present study, it was demonstrated that the hypermethylation of TESC led to the downregulation of TESC mRNA/protein expression. In addition, 5-aza-2c-deoxycytidine (5'-aza-dC) restored TESC expression in the tested gastric cancer cells except for SNU-620 cells. ChIP assay further revealed that the methylation of the TESC promoter was associated with methyl-CpG binding domain protein (MBD)1, histone deacetylase (HDAC)2, and Oct-1 and that treatment with 5'-aza-dC facilitated the dissociation of MBD1, HDAC2, and Oct-1 from the promoter of TESC. Moreover, silencing of TESC increased MBD1 expression and decreased the H3K4me2/3 level, thereby causing transcriptional repression and suppression of cell survival in NCI-N87 cells; conversely, overexpression of TESC downregulated MBD1 expression and upregulated the H3K4me2 level associated with active transcription in SNU-638 cells. These results indicated that the differential expression of TESC via the modification status of the promoter and histone methylation controled cell survival in gastric cancer cells. Overall, the present study provided a novel therapeutic strategy for gastric cancer.

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi;Kim, Hyuna;Park, Deokbum;Jeoung, Dooil
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.562-572
    • /
    • 2015
  • We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.

인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석 (Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells)

  • 김미영;손정규;이숙경;구효정
    • 약학회지
    • /
    • 제49권6호
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

PSME4 determines mesenchymal stem cell fate towards cardiac commitment through YAP1 degradation

  • Mira Kim;Yong Sook Kim;Youngkeun Ahn;Gwang Hyeon Eom;Somy Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.407-416
    • /
    • 2023
  • The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.

The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs

  • Wu, Yao;Si, Feifei;Luo, Li;Jing, Fengchuan;Jiang, Kunfeng;Zhou, Jiwei;Yi, Qijian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.607-616
    • /
    • 2018
  • The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of $TNF-{\alpha}$ was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.

비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전 (Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer)

  • 장윤수;이호영;김영삼;김형중;장준;안철민;김성규;김세규
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권5호
    • /
    • pp.465-484
    • /
    • 2004
  • 배 경 : 인슐린 양 성장 인자(IGF) 결합 단백질-3(IGFBP-3)은 IGF와 결합하여 IGF의 세포 분열 촉진 및 항세포 고사 기전을 억제할 뿐 아니라 IGF와는 독립적으로 세포고사를 유도함으로써 비소세포성 폐암 세포주의 성장을 억제한다. 방 법 : 본 연구에서 저자들은 IGFBP-3 promoter의 hyper-methylation이 IGFBP-3 단백 발현에 어떠한 역할을 하는가를 연구하였다. 또한 비소세포성 폐암 세포주에서 methylation된 IGFBP-3 promoter에서 유전자 발현을 억제하는 기전을 연구하였다. 결 과 : 본 연구에 사용된 15 종의 비소세포성 폐암 세포주 중 7종 (46.7%)에서 IGFBP-3 promoter의 methylation 이 관찰되었으며, 23명의 I기 환자 검체 중 16 (69.7%), 9명의 II기 환자 검체중 7 (77.8%), 5명의 IIIA 환자 검체중 4 (80%), 6명의 IIIB 환자 검체중 4 (66.7 %), 그리고 6 명의 IV기 환자검체중 6명 모두에서 (100%) promoter 의 methylation 이 관찰되었다. 이 비소세포성 폐암 세포주에서 promoter methylation 상태는 IGFBP-3 단백 및 mRNA 발현양상과 잘 일치하였으며, IGFBP-3의 발현이 억제되었던 비소세포성 폐암 세포주들 중 일부의 세포에서 demethylating 약제인 5'-aza-2'-deoxycytidine (5'-aza-dC) 처리 후 그 발현이 회복되었다. IGFBP-3 promoter 활성도에 중요한 역할을 하는 Sp-1/Sp-3 결합 요소는 IGFBP-3 단백 발현이 억제된 비소세포성 폐암 세포주에서 methylation되어 있었으며, 이 요소의 methylation 은 Sp-1 전사 인자의 결합을 억제하였다. ChIP assay 결과에서 IGFBP-3 promoter의 methylation 상태는 Sp-1/Sp-3 결합 요소에 Sp-1, methyl-CpG binding protein-2 (MeCP2), 그리고 histone deacetylase (HDAC)의 결합에 영향을 주며, 이는 5'-aza-dC 처리에 의하여 역전 되었다. Sp-1/Sp-3 결합 요소를 포함하고 있는 IGFBP-3 promoter의 in vitro methylation은 promoter activity를 현저히 감소시켰으며 이는 MeCP2 단백을 동시에 발현 시켰을 때 더욱 억제되며 5'-aza-dC 처리시 회복되었다. 결 론 : 이러한 결과들은 IGFBP-3 promoter의 methylation이 IGFBP-3 발현을 억제하는 하나의 기전이며, HDAC의 모집을 유도함으로서 MeCP2가 IGFBP-3 발현 억제에 중요한 역할을 함을 보이는 것이다. 이런 현상은 비소세포성 폐암에서 진단 당시의 진행된 병기와도 관계가 있어 IGFBP-3 promoter의 methylation 상태가 비소세포성 폐암의 발암 기전 및 진행에 중요한 역할을 하고 있음을 보이고 있으며, 나아가 조기 진단 및 암 예방영역에서 하나의 생물학적 지표로도 사용될 수 있을 것으로 생각된다.