• 제목/요약/키워드: Histone acetyltransferase

검색결과 33건 처리시간 0.016초

TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells

  • Kang, Kyung Taek;Kwon, Yang Woo;Kim, Dae Kyoung;Lee, Su In;Kim, Ki-Hyung;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.514-519
    • /
    • 2018
  • Ovarian cancer is the most fatal gynecological malignancy in women and identification of new therapeutic targets is essential for the continued development of therapy for ovarian cancer. TRRAP (transformation/transcription domain-associated protein) is an adaptor protein and a component of histone acetyltransferase complex. The present study was undertaken to investigate the roles played by TRRAP in the proliferation and tumorigenicity of ovarian cancer stem cells. TRRAP expression was found to be up-regulated in the sphere cultures of A2780 ovarian cancer cells. Knockdown of TRRAP significantly decreased cell proliferation and the number of A2780 spheroids. In addition, TRRAP knockdown induced cell cycle arrest and increased apoptotic percentages of A2780 sphere cells. Notably, the mRNA levels of stemness-associated markers, that is, OCT4, SOX2, and NANOG, were suppressed in TRRAP-silenced A2780 sphere cells. In addition, TRRAP overexpression increased the mRNA level of NANOG and the transcriptional activity of NANOG promoter in these cells. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model. Taken together, the findings of the present study suggest that TRRAP plays an important role in the regulation of the proliferation and stemness of ovarian cancer stem cells.

Synergistic antitumor activity of sorafenib and MG149 in hepatocellular carcinoma cells

  • Moon, Byul;Park, Mijin;Cho, Seung-Hyun;Kim, Kang Mo;Seo, Haeng Ran;Kim, Jeong-Hoon;Kim, Jung-Ae
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.506-511
    • /
    • 2022
  • Advanced hepatocellular carcinoma (HCC) is among the most challenging cancers to overcome, and there is a need for better therapeutic strategies. Among the different cancer drugs that have been used in clinics, sorafenib is considered the standard first-line drug for advanced HCC. Here, to identify a chemical compound displaying a synergistic effect with sorafenib in HCC, we screened a focused chemical library and found that MG149, a histone acetyltransferase inhibitor targeting the MYST family, exhibited the most synergistic anticancer effect with sorafenib on HCC cells. The combination of sorafenib and MG149 exerted a synergistic anti-proliferation effect on HCC cells by inducing apoptotic cell death. We revealed that cotreatment with sorafenib and MG149 aggravated endoplasmic reticulum (ER) stress to promote the death of HCC cells rather than adaptive cell survival. In addition, combined treatment with sorafenib and MG149 significantly increased the intracellular levels of unfolded proteins and reactive oxygen species, which upregulated ER stress. Collectively, these results suggest that MG149 has the potential to improve the efficacy of sorafenib in advanced HCC via the upregulation of cytotoxic ER stress.

Genome-wide Drug-induced Haploinsufficiency Screening of Fission Yeast for Identification of Hydrazinocurcumin Targets

  • Baek, Seung-Tae;Kim, Dong-Uk;Han, Sang-Jo;Woo, Im-Sun;Nam, Mi-Young;Kim, Li-La;Heo, Kyung-Sun;Lee, Hye-Mi;Hwang, Hye-Rim;Choi, Shin-Jung;Won, Mi-Sun;Lee, Min-Ho;Park, Song-Kyu;Lee, Sung-Hou;Kwon, Ho-Jeong;Maeng, Pil-Jae;Park, Hee-Moon;Park, Young-Woo;Kim, Dong-Sup;Hoe, Kwang-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.263-269
    • /
    • 2008
  • Hydrazinocurcumin (HC), a synthetic derivative of curcumin, has been reported to inhibit angiogenesis via unknown mechanisms. Understanding the molecular mechanisms of the drug's action is important for the development of improved compounds with better pharmacological properties. A genome-wide drug-induced haploinsufficiency screening of fission yeast gene deletion mutants has been applied to identify drug targets of HC. As a first step, the 50% inhibition concentration $(IC_{50})$ of HC was determined to be $2.2{\mu}M$. The initial screening of 4,158 mutants in 384-well plates using robotics was performed at concentrations of 2, 3, and $4{\mu}M$. A second screening was performed to detect sensitivity to HC on the plates. The first screening revealed 178 candidates, and the second screening resulted in 13 candidates, following the elimination of 165 false positives. Final filtering of the condition-dependent haploinsufficient genes gave eight target genes. Analysis of the specific targets of HC has shown that they are related to septum formation and the general transcription processes, which may be related to histone acetyltransferase. The target mutants showed 65% growth inhibition in response to HC compared with wild-type controls, as shown by liquid culture assay.