• Title/Summary/Keyword: Histone H4

Search Result 123, Processing Time 0.024 seconds

Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in HepG2 Cells

  • Kim Ja Young;Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2004
  • The expression of CYP3A4 gene is induced by a variety of structurally unrelated xenobiotics including the antibiotic rifampicin, pregnenolone 16-carbonitrile (PCN), and endogenous hormones, that might mediate through steroid and xenobiotic receptor (SXR) system. The molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. In order to gain the insight of the molecular mechanism of CYP3A4 gene expression, study has been undertaken to investigate if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter in human hepatoma HepG2 cells. Also we have investigated to see if SXR is involved in the regulation of CYP3A4 proximal promoter activity in human hepatoma HepG2 cells. HepG2 cells were transfected with a plasmid PCYP3A4-Luc containing ${\~}1kb$ of the CYP3A4 proximal promoter region (-863 to +64 bp) in front of a reporter gene, luciferase, in the presence or absence of pSAP-SXR. In HepG2 cells, CYP3A4 inducers, such as rifampicin, PCN and RU486 showed minimal stimulation of CYP3A4 proximal promoter activity in the absence of SXR and histone deacetylase (HDAC) inhibitors. 4-Dimethylamino-H-[4-(2-hydroxycarbamoylvinyl)benzyl]benzamide (IN2001), a new class HDAC inhibitor significantly increased CYP3A4 proximal promoter activity over untreated control cells and rifampicin concomitant treatment with IN2001 increased further CYP3A4 proximal promoter activity that was stimulated by IN2001 The results of this study demon-strated that both HDAC inhibitors and SXR are essential to increase of CYP3A4 proximal promoter activity by CYP3A4 inducers such as PCN, rifampicin, and RU486. Especially SXR seems to be important for the dose dependent response of CYP3A4 inducing chemicals to stimulate CYP3A4 proximal promoter activity. Also this data suggested that HDAC inhibitors seemed to facilitate the CYP3A4 proximal promoter to be activated by chemicals.

Active Immunization against Adrenocorticotropic Hormone in Growing-Finishing Barrows: An Initial Trial and Evaluation

  • Lee, C.Y.;Baik, K.H.;Jeong, J.H.;Lee, S.D.;Park, J.K.;Song, Y.M.;Kim, Y.S.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.410-415
    • /
    • 2002
  • Adrenal glucocorticoids, secreted by the stimulus of adrenocorticotropic hormone (ACTH), are catabolic hormones in the pig. The present study was conducted to find whether active immunization against ACTH would suppress cortisol secretion accompanied by an increased growth rate in growing-finishing barrows. ACTH was conjugated to keyhole limpet hemocyanin or human histone using glutaraldehyde or 3-maleimidobenzoic acid N-hydroxysuccinimide, under a 2 (ACTH vs no hapten)${\times}$2 (carrier)${\times}$2 (crosslinker) factorial arrangement of treatments. Cross-bred barrows weighing approximately 25 kg were injected with an ACTHcarrier or carrier only conjugate every 4th wk and slaughtered at approximately 110 kg body weight. Antibodies against ACTH were detected in serum, as determined by $[^{125}I]$ACTH-binding activity, in most animals immunized against the ACTH conjugate, but not in carrier only-injected animals, except for the animals which had received the hapten conjugated to histone via glutaraldehyde. The $[^{125}I]$ACTH-binding activity of serum increased after the second booster injection, but overall ACTH antibody titer was very low. Main effect was not detected not only for the carrier and crosslinker but for the hapten in serum cortisol concentration, ADG, loin muscle area, backfat thickness and longissimus muscle composition including fat and protein. In addition, bound $[^{125}I]$ACTH percentage had no relation to cortisol concentration or to any of the above growth-related variables. Results suggest that ACTH or its conjugates used in the present study were not immunogenically potent enough to affect the glucocorticoid secretion and thus the growth of the immunized pigs.

Fractionation of enzymatically methylated acid-insoluble proteins from thymus nuclei

  • Lee, Hyang-Woo;Kim, Sang-Duk;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.157-161
    • /
    • 1986
  • Isolated calf thymus nuclei were in vitro methylated with S- adenosy-L-methyl-$^{14}C$ methionine, and the proteins were fractionated according to their solubilities. Histone fraction ($H_{2}SO_{4}$-soluble fraction) contained approximately 60% total radioactivity incorporated, while "residual protein" which was ($H_{2}SO_{4}$-insoluble contained the remaining radio-activity. The "residual protein" was further fractionated into various acidic proteins, which contained very littel of the radioactivity. However, the protein fraction eluted from DEAE-cellulose with 0.5 N NaOH contained the largest amount of radioactivity. This protein was found to be basic in nature by amino analysis.

  • PDF

Expression of Sodium/iodide Symporter Transgene in Neural Stem Cells (신경줄기세포(HB1.F3)에서 나트륨옥소 공동수송체 도입유전자 발현)

  • Kim, Yun-Hui;Lee, Dong-Soo;Kang, Joo-Hyun;Lee, Yong-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Purpose: The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. Materials and Methods: F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (Internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. Results: The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to $20{\mu}M$, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. Conclusion: These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene ex[ressopm of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Potential Hypersensitivity of Recombinant Mouse IL-2 as a Immunotherapeutic Agent of Cancer in Tumor-bearing BALB/c Mice (항암 면역요법제 인터루킨-2의 면역과민반응 평가연구)

  • Cho, Young-Joo;Eom , Juno H.;Gil , Jung-Hyun;Park , Jae-Hyun;Lee , Jong-Kwon;Oh , Hye-Young;Park , Kui-Lea;Kim , Hyung-Soo
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.335-344
    • /
    • 2004
  • Interleukin-2 (IL-2), a glycoprotein mainly secreted by CD4+ T helper Iymphocytes, has been developed to use recombinant cytokine to augment the immune response against cancer since IL-2 not only stimulates T Iymphocytes but also enhances natural killer (NK) cell activity. In order to evaluate the immunological safety of recombinant mouse IL-2 (rmIL-2) in cancer therapy, renal cell carcinoma was established in the flank by s.c. injection of renca cell line. Tumor-bearing BALB/c mice were treated with I.p. injections with $2{\times}10^5$ Lu rmIL-2. Even though the tumor size was diminished, there were not significant recovery of body and relative lymphoid organ weights including thymic atrophy in rmIL-2 immunotherapy. Distribution ratios of T cell subsets in thymus were analysed using flow cytometry. Without regard to dosage of rmIL-2, the ratio of CD3+CD4-CD8- T cells was increased in accordance with survival of solid tumor but that of CD4+CD8+ T cells was decreased dramatically. Emergence of autoantibodies (ANA, anti-dsDNA, and anti-histone) in blood was measured after rmIL-2 treatment. The results showed that the levels of ANA and anti-dsDNA did not significantly changed, but the level of anti-histone was increased significantly owing to rmIL-2 therapy. These results indicate rmIL-2 immunotherapy is to induce the autoimmune potential, and the anti-histone measurement as a biomarker of autoimmunity is useful in cancer immunotherapy.

Effects of Early Life Stress on the Development of Depression and Epigenetic Mechanisms of p11 Gene (생애 초기 유해 경험이 우울증의 발병과 p11 유전자의 후성유전기전에 미치는 영향)

  • Seo, Mi Kyoung;Choi, Ah Jeong;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1002-1009
    • /
    • 2019
  • Early life stress (ELS) increases the risk of depression. ELS may be involved in the susceptibility to subsequent stress exposure during adulthood. We investigated whether epigenetic mechanisms of p11 promoter affect the vulnerability to chronic unpredictable stress (CUS) induced by the maternal separation (MS). Mice pups were separated from their dams (3 hr/day from P1-P21). When the pups reached adulthood, we applied CUS (daily for 3 weeks). The levels of hippocampal p11 expression were analyzed by quantitative real-time PCR. The levels of acetylated and methylated histone H3 at p11 promoter were measured by chromatin immunoprecipitation. Depression-like behavior was measured by the forced swimming test (FST). The MS and CUS group exhibited significant decreases in p11 mRNA level and the MS plus CUS group had a greater reduction in this level than the CUS group. The MS plus CUS group also resulted in greater reduction in H3 acetylation than the CUS group. This reduction was associated with an upregulation of histone deacetylase 5. Additionally, the MS plus CUS group showed a greater decrease in H3K4met3 level and a greater increase in H3K27 met3 level than the CUS group. Consistent with the reduction of p11 expression, the MS plus CUS group displayed longer immobility times in the FST compared to the control group. Mice exposed to MS followed by CUS had much greater epigenetic alterations in the hippocampus compared to adult mice that only experienced CUS. ELS can exacerbate the effect of stress exposure during adulthood through histone modification of p11 gene.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF