• Title/Summary/Keyword: Histogram shifting

Search Result 28, Processing Time 0.018 seconds

Reversible Data Hiding in Block Truncation Coding Compressed Images Using Quantization Level Swapping and Shifting

  • Hong, Wien;Zheng, Shuozhen;Chen, Tung-Shou;Huang, Chien-Che
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2817-2834
    • /
    • 2016
  • The existing reversible data hiding methods for block truncation coding (BTC) compressed images often utilize difference expansion or histogram shifting technique for data embedment. Although these methods effectively embed data into the compressed codes, the embedding operations may swap the numerical order of the higher and lower quantization levels. Since the numerical order of these two quantization levels can be exploited to carry additional data without destroying the quality of decoded image, the existing methods cannot take the advantages of this property to embed data more efficiently. In this paper, we embed data by shifting the higher and lower quantization levels in opposite direction. Because the embedment does not change numerical order of quantization levels, we exploit this property to carry additional data without further reducing the image quality. The proposed method performs no-distortion embedding if the payload is small, and performs reversible data embedding for large payload. The experimental results show that the proposed method offers better embedding performance over prior works in terms of payload and image quality.

Reversible Watermarking Based On Histogram Shifting (히스토그램 쉬프팅 기법을 이용한 리버서블 워터마킹)

  • Hwang, Jin-Ha;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.168-174
    • /
    • 2007
  • In this paper, we propose a reversible watermarking algorithm where an original image can be recovered from the watermarked image. Most watermarking algorithms cause degradation of image quality in original digital contents in the process of embedding watermarks. In the proposed algorithm, the original image can be obtained when the degradation is removed from the watermarked image after extracting watermark information. In the proposed algorithm, we utilize a peak point of image histogram and the location map and modify pixel values slightly to embed data. Because the peak point of image histogram and the location map are employed in this algorithm, there is no need of extra information transmitted to the receiving side. As the locations watermark embedding are identified using the location map, the amount of watermark data can increase through recursive embedding.

High capacity multi-bit data hiding based on modified histogram shifting technique

  • Sivasubramanian, Nandhini;Konganathan, Gunaseelan;Rao, Yeragudipati Venkata Ramana
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • A novel data hiding technique based on modified histogram shifting that incorporates multi-bit secret data hiding is proposed. The proposed technique divides the image pixel values into embeddable and nonembeddable pixel values. Embeddable pixel values are those that are within a specified limit interval surrounding the peak value of an image. The limit interval is calculated from the number of secret bits to be embedded into each embeddable pixel value. The embedded secret bits can be perfectly extracted from the stego image at the receiver side without any overhead bits. From the simulation, it is found that the proposed technique produces a better quality stego image compared to other data hiding techniques, for the same embedding rate. Since the proposed technique only embeds the secret bits in a limited number of pixel values, the change in the visual quality of the stego image is negligible when compared to other data hiding techniques.

Reversible Watermark Using an Accurate Predictor and Sorter Based on Payload Balancing

  • Kang, Sang-Ug;Hwang, Hee-Joon;Kim, Hyoung-Joong
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.410-420
    • /
    • 2012
  • A series of reversible watermarking technologies have been proposed to increase embedding capacity and the quality of the watermarked image simultaneously. The major skills include difference expansion, histogram shifting, and optimizing embedding order. In this paper, an accurate predictor is proposed to enhance the difference expansion. An efficient sorter is also suggested to find a more desirable embedding order. The payload is differently distributed into two sub-images, split like a chessboard pattern, for better watermarked image quality. Simulation results of the accurate prediction and sorter based on the payload balancing method yield generally better performance over previous methods. The gap is wide, in particular, in low payload for natural images. The peak signal-to-noise ratio improvement is around 2 dB in low payload ranges.

Two-wheelers Detection using Local Cell Histogram Shift and Correlation (국부적 Cell 히스토그램 시프트와 상관관계를 이용한 이륜차 인식)

  • Lee, Sanghun;Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1418-1429
    • /
    • 2014
  • In this paper we suggest a new two-wheelers detection algorithm using local cell features. The first, we propose new feature vector matrix extraction algorithm using the correlation two cells based on local cell histogram and shifting from the result of histogram of oriented gradients(HOG). The second, we applied new weighting values which are calculated by the modified histogram intersection showing the similarity of two cells. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Prediction-based Reversible Data Hiding Using Empirical Histograms in Images

  • Weng, Chi-Yao;Wang, Shiuh-Jeng;Liu, Jonathan;Goyal, Dushyant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1248-1266
    • /
    • 2012
  • This paper presents a multilevel reversible data hiding method based on histogram shifting which can recover the original image losslessly after the hidden data has been extracted from the stego-image. The method of prediction is adopted in our proposed scheme and prediction errors are produced to explore the similarity of neighboring pixels. In this article, we propose two different predictors to generate the prediction errors, where the prediction is carried out using the center prediction method and the JPEG-LS median edge predictor (MED) to exploit the correlation among the neighboring pixels. Instead of the original image, these prediction errors are used to hide the secret information. Moreover, we also present an improved method to search for peak and zero pairs and also talk about the analogy of the same to improve the histogram shifting method for huge embedding capacity and high peak signal-to-noise ratio (PSNR). In the one-level hiding, our method keeps image qualities larger than 53 dB and the ratio of embedding capacity has 0.43 bpp (bit per pixel). Besides, the concept with multiple layer embedding procedure is applied for obtaining high capacity, and the performance is demonstrated in the experimental results. From our experimental results and analytical reasoning, it shows that the proposed scheme has higher PSNR and high data embedding capacity than that of other reversible data hiding methods presented in the literature.

Histogram-based Reversible Data Hiding Based on Pixel Differences with Prediction and Sorting

  • Chang, Ya-Fen;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3100-3116
    • /
    • 2012
  • Reversible data hiding enables the embedding of messages in a host image without any loss of host content, which is proposed for image authentication that if the watermarked image is deemed authentic, we can revert it to the exact copy of the original image before the embedding occurred. In this paper, we present an improved histogram-based reversible data hiding scheme based on prediction and sorting. A rhombus prediction is employed to explore the prediction for histogram-based embedding. Sorting the prediction has a good influence on increasing the embedding capacity. Characteristics of the pixel difference are used to achieve large hiding capacity while keeping low distortion. The proposed scheme exploits a two-stage embedding strategy to solve the problem about communicating peak points. We also present a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing reversible data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

A Lightweight Integrity Authentication Scheme based on Reversible Watermark for Wireless Body Area Networks

  • Liu, Xiyao;Ge, Yu;Zhu, Yuesheng;Wu, Dajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4643-4660
    • /
    • 2014
  • Integrity authentication of biometric data in Wireless Body Area Network (WBAN) is a critical issue because the sensitive data transmitted over broadcast wireless channels could be attacked easily. However, traditional cryptograph-based integrity authentication schemes are not suitable for WBAN as they consume much computational resource on the sensor nodes with limited memory, computational capability and power. To address this problem, a novel lightweight integrity authentication scheme based on reversible watermark is proposed for WBAN and implemented on a TinyOS-based WBAN test bed in this paper. In the proposed scheme, the data is divided into groups with a fixed size to improve grouping efficiency; the histogram shifting technique is adopted to avoid possible underflow or overflow; local maps are generated to restore the shifted data; and the watermarks are generated and embedded in a chaining way for integrity authentication. Our analytic and experimental results demonstrate that the integrity of biometric data can be reliably authenticated with low cost, and the data can be entirely recovered for healthcare applications by using our proposed scheme.

DE-Based Adaptive Reversible Data Hiding Scheme (DE 기반의 적응적인 가역정보은닉기법)

  • Choi, Jang-Hee;Yoon, Eun-Jun;Yoo, Kee-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • The many DE based data hiding schemes and the many data hiding schemes based on Histogram shifting are researched in spatial domain. The data hiding scheme based on Histogram shifting have an advantage of low distortion of the stego image. But the capacity is low than other schemes. On the other hands, the DE based data hiding schemes have an advantage of high capacity. But the quality of the stego image is low. In this paper, new data hiding scheme which has the similar capacity but the increased quality of the stego image is proposed. The prediction error is divided into blocks to embed the secret data in this scheme. The prediction errors in the block are scanned before the secret data is embedded. If one prediction error is low than the threshold at least, the block is changed to embed the secret data. Otherwise the secret data is not embedded. The distortion of the stego image is minimized by this method. But the block that the secret data embedded is marked in location map. So the additional information to extract the secret data and recover the cover image is needed.