• Title/Summary/Keyword: Histogram enhancement

검색결과 200건 처리시간 0.024초

이미지 향상을 위해 공간영역에서 다중해상도를 이용한 개선된 히스토그램 특정화 방법 (An Improved Histogram Specification using Multiresolution in the Spatial Domain for Image Enhancement)

  • 허경무
    • 제어로봇시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.657-662
    • /
    • 2014
  • Usually, spatial information can be incorporated into histograms by taking histograms of a multiresolution image. For these reasons, many researchers are interested in multiresolution histogram processing. If the relation and sensitivity of the multiresolution images are well combined without loss of information, we can obtain satisfactory results in several fields of image processing including histogram equalization, specification and pattern matching. In this paper, we propose a multiresolution histogram specification method that improves the accuracy of histogram specification. The multiresolution decomposition technique is used in order to overcome the unique feature of a histogram specification affected by a quantization error of a digitalized image. The histogram specification is processed after the reduction of image resolution in order to enhance the accuracy of the results by histogram specification methods. The experimental results show that the proposed method enhances the accuracy of specification compared to conventional methods.

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

유연한 로지스틱 변환함수를 이용한 영상의 히스토그램 평활화 (Image Histogram Equalization Using Flexible Logistic Transformation Function)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.787-795
    • /
    • 2009
  • 본 논문에서는 영상의 화질개선을 위해 로지스틱 함수에 기반을 둔 히스토그램 평활화 방법을 제안하였다. 여기서 히스토그램 평활화는 영상의 밝기를 조정함으로써 화질을 개선하는 간단하고 효과적인 공간영역 기반 처리기법이다. 또한 로지스틱 함수는 비선형의 변환함수로 영상의 명암도 발생빈도수에 따라 밝기개선 정도를 적응적으로 조정하기 위함이다. 특히 영상의 히스토그램에서 최대 발생빈도수를 가지는 명암도와 최대 명암도 및 전체 픽셀수만을 이용한 유연한 비대칭의 로지스틱 함수를 제안함으로써, 기존 로지스틱 함수에서의 지수함수 계산 부담과 최적의 계수 값을 경험적으로 사전에 설정해야하는 제약을 해결하였다. 제안된 기법을 다양한 크기의 해상도와 히스토그램 분포를 가지는 영상을 대상으로 실험한 결과, 기존의 히스토그램 평활화와 적응적 변형 히스토그램 평활화보다도 우수한 화질개선 성능과 빠른 평활화 속도가 있음을 확인하였다. 또한 제안된 기법은 멀티미디어 시스템에서 실시간 평활화 기법으로도 충분히 이용될 수 있음을 확인하였다.

영상 개선을 위한 공간 영역에서의 다해상도 히스토그램 지정 기법 (Multiresolution Histogram Specification Method in The Spatial Domain for Image Enhancement)

  • 박세혁;허경무
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.169-171
    • /
    • 2009
  • The histogram specification is to change the histogram shape of the image into the already defined shape. This technique can be applied usefully in various image processing fields which include a machine vision. However, the histogram specification technique has its basic limits. For example, the histogram does not have location information of pixel within the image and receives the digital image, which is stored through a quantization process, as an input. Namely, the accuracy of specification falls in the high-resolution image because the larger the resolution of image is becoming, the more the pixels having similar value are becoming. Therefore, we proposed the multiresolution histogram specification method for improving the accuracy of specification. Consequently, we can know that if the histogram specification is accomplished by using the proposed algorithm, destination image and source image were changed almost similarly.

  • PDF

영상 에지 정보를 이용한 히스토그램 평활화 기법의 개선 (An Improvement of Histogram Equalization Using Edge Information of an Image)

  • 윤종섭;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.188-195
    • /
    • 2017
  • The paper presents a histogram equalization method using the edge information of an image to be processed. The basic idea of this method is to carry out histogram equalization with edge information, which is important and essential for object conformation. In the proposed method, the edge information is used to generate histogram for the equalization process. It is found to be effective to suppress the histogram spikes that cause quantum jumps in mapping function for the equalization process. The proposed method is tested for randomly selected 30 images and compared to conventional approaches with a quantitative measure to check it preserves the structural similarity. Experimental results show that the proposed method has better performance and no artifacts caused by histogram spikes.

A Real-Time Histogram Equalization System with Automatic Gain Control Using FPGA

  • Cho, Jung-Uk;Jin, Seung-Hun;Kwon, Key-Ho;Jeon, Jae-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권4호
    • /
    • pp.633-654
    • /
    • 2010
  • High quality camera images, with good contrast and intensity, are needed to obtain the desired information. Images need to be enhanced when they are dark or bright. The histogram equalization technique, which flattens the density distribution of an image, has been widely used to enhance image contrast due to its effectiveness and simplicity. This technique, however, cannot be used to enhance images that are either too dark or too bright. In addition, it is difficult to perform histogram equalization in real-time using a general-purpose computer. This paper proposes a histogram equalization technique with AGC (Automatic Gain Control) to extend the image enhancement range. It is designed using VHDL (VHSIC Hardware Description Language) to enhance images in real-time. The system is implemented with an FPGA (Field Programmable Gate Array). An image processing system with this FPGA is implemented. The performance of this image processing system is measured.

가우시안 영역 분리 기반 명암 대비 향상 (Contrast Enhancement based on Gaussian Region Segmentation)

  • 심우성
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.608-617
    • /
    • 2017
  • 영역 분리에 의한 명암대비 방법들이 제안되어 왔지만 영상의 히스토그램에 따라 과포화 되는 부작용이나 밝기 값 보존과 명암대비 효과의 상반 관계에 대한 개선이 필요하다. 본 논문은 다양한 히스토그램에서도 명암 대비가 개선 되도록 영역 분리 시 각 서브 영역이 가우시안 분포를 갖도록 분리하고 영역별 평활화하는 명암 대비 방법을 제안 한다. 영역 분리는 $L^*a^*b^*$ 컬러 공간에서 K-평균 방법과 기대-최대 방법에 의해 영역맵과 확률맵을 생성하며 영역별 히스토그램 평활화 방법은 영역간 히스토그램 중복 최소를 위해 평균값 이동과 영역 분리에서 생성된 확률맵을 변환 함수에 활용함으로써 영역별 밝기값을 보존 하였다. 실험은 기존의 명암 대비 방법들과 평균 밝기 차이와 평균 엔트로피 값을 이용하여 밝기 변화가 적고 영상의 세부 정보가 표현됨에 의한 명암대비 개선을 보인다.

IAFC 모델을 이용한 영상 대비 향상 기법 (An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model)

  • 이금분;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법 (A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm)

  • 정준희;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

Image Enhancement Algorithm and its Application in Image Defogging

  • Jun Cao
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.465-473
    • /
    • 2023
  • An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.