• Title/Summary/Keyword: Histogram bins

Search Result 27, Processing Time 0.024 seconds

Image Retrieval Using the Color Co-occurrence Histogram Describing the Size and Coherence of the Homogeneous Color Region (칼라 영역의 크기와 뭉침을 기술하는 칼라 동시발생 히스토그램을 이용한 영상검색)

  • An Myung-Seok;Cho Seok-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.275-282
    • /
    • 2006
  • For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurrence histogram that the diagonal part and the non-diagonal part are attached the weight and modified to energy of color co-occurrence histogram, and the number of bins with petty worth have little influence is curtailed. It's verified by analysis that the diagonal part carries size information of homogeneous color region and the non-diagonal part does information about the coherence of it, Moreover the non-diagonal part is more influential than diagonal part in survey of similarity between images. So, the non-diagonal part is attached more weight than the diagonal part as a result of the research. The experiments validate that the proposed descriptor shows better image retrieval performance when the weight for non-diagonal part is set to the value between 0.7 and 0.9.

Content-based Image Retrieval using Color Ratio and Moment of Object Region (객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색)

  • Kim, Eun-Kyong;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.501-508
    • /
    • 2002
  • In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.

Writer Verification Using Spatial Domain Features under Different Ink Width Conditions

  • Kore, Sharada Laxman;Apte, Shaila Dinkar
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.39-50
    • /
    • 2016
  • In this paper, we present a comparative study of spatial domain features for writer identification and verification with different ink width conditions. The existing methods give high error rates, when comparing two handwritten images with different pen types. To the best of our knowledge, we are the first to design the feature with different ink width conditions. To address this problem, contour based features were extracted using a chain code method. To improve accuracy at higher levels, we considered histograms of chain code and variance in bins of histogram of chain code as features to discriminate handwriting samples. The system was trained and tested for 1,000 writers with two samples using different writing instruments. The feature performance is tested on our newly created dataset of 4,000 samples. The experimental results show that the histogram of chain code feature is good compared to other methods with false acceptance rate of 11.67%, false rejection rate of 36.70%, average error rates of 24.18%, and average verification accuracy of 75.89% on our new dataset. We also studied the effect of amount of text and dataset size on verification accuracy.

Identification of Transformed Image Using the Composition of Features

  • Yang, Won-Keun;Cho, A-Young;Cho, Ik-Hwan;Oh, Weon-Geun;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.764-776
    • /
    • 2008
  • Image identification is the process of checking whether the query image is the transformed version of the specific original image or not. In this paper, image identification method based on feature composition is proposed. Used features include color distance, texture information and average pixel intensity. We extract color characteristics using color distance and texture information by Modified Generalized Symmetry Transform as well as average intensity of each pixel as features. Individual feature is quantized adaptively to be used as bins of histogram. The histogram is normalized according to data type and it is used as the signature in comparing the query image with database images. In matching part, Manhattan distance is used for measuring distance between two signatures. To evaluate the performance of the proposed method, independent test and accuracy test are achieved. In independent test, 60,433 images are used to evaluate the ability of discrimination between different images. And 4,002 original images and its 29 transformed versions are used in accuracy test, which evaluate the ability that the proposed algorithm can find the original image correctly when some transforms was applied in original image. Experiment results show that the proposed identification method has good performance in accuracy test. And the proposed method is very useful in real environment because of its high accuracy and fast matching capacity.

  • PDF

Content based Image Retrieval using RGB Maximum Frequency Indexing and BW Clustering (RGB 최대 주파수 인덱싱과 BW 클러스터링을 이용한 콘텐츠 기반 영상 검색)

  • Kang, Ji-Young;Beak, Jung-Uk;Kang, Gwang-Won;An, Young-Eun;Park, Jong-An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • This study proposed a content-based image retrieval system that uses RGB maximum frequency indexing and BW clustering in order to deal with existing retrieval errors using histogram. We split RGB from RGB color images, obtained histogram which was evenly split into 32 bins, calculated and analysed pixels of each area at histogram of R, G, B and obtained the maximum value. We indexed the color information obtained, obtained 100 similar images using the values, operated the final image retrieval system using the total number and distribution rate of clusters. The algorithm proposed in this study used space information using the features obtained from R, G, and B and clusters to obtain effective features, which overcame the disadvantage of existing gray-scale algorithm that perceived different images as same if they have the same frequencies of shade. As a result of measuring the performances using Recall and Precision, this study found that the retrieval rate and priority of the proposed algorithm are more outstanding than those of existing algorithm.

  • PDF

Middle Ear Disease Automatic Decision Scheme using HoG Descriptor (HoG 기술자를 이용한 중이염 자동 판별 방법)

  • Jung, Na-ra;Song, Jae-wook;Choi, Ho-Hyoung;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.621-629
    • /
    • 2016
  • This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.

Sub Oriented Histograms of Local Binary Patterns for Smoke Detection and Texture Classification

  • Yuan, Feiniu;Shi, Jinting;Xia, Xue;Yang, Yong;Fang, Yuming;Wang, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1807-1823
    • /
    • 2016
  • Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.