• 제목/요약/키워드: Histogram bins

검색결과 27건 처리시간 0.273초

Retrieval of Identical Clothing Images Based on Non-Static Color Histogram Analysis

  • ;;김구진
    • 방송공학회논문지
    • /
    • 제14권4호
    • /
    • pp.397-408
    • /
    • 2009
  • In this paper, we present a non-static color histogram method to retrieve clothing images that are similar to a query clothing. Given clothing area, our method automatically extracts major colors by using the octree-based quantization approach[16]. Then, a color palette that is composed of the major colors is generated. The feature of each clothing, which can be either a query or a database clothing image, is represented as a color histogram based on its color palette. We define the match color bins between two possibly different color palettes, and unify the color palettes by merging or deleting some color bins if necessary. The similarity between two histograms is measured by using the weighted Euclidean distance between the match color bins, where the weight is derived from the frequency of each bin. We compare our method with previous histogram matching methods through experiments. Compared to HSV cumulative histogram-based approach, our method improves the retrieval precision by 13.7 % with less number of color bins.

운영 위험 관련 손실 분포 - 퍼지 히스토그램의 효과 (Fuzzy histogram in estimating loss distributions for operational risk)

  • 박노진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권4호
    • /
    • pp.705-712
    • /
    • 2009
  • 히스토그램이 활용의 간편성과 자료의 전체적 구조를 한 눈에 볼 수 있는 정보량을 제공하지만 히스토그램의 계급 구간의 설정에 따라 그 표현이 달라 질 수 있는 문제가 있다. 이러한 문제를 해결하기 위해 퍼지 개념을 활용한 히스토그램이 제안되었고 그 효과가 제시되었다 (Loquin과 Strauss, 2008). 히스토그램이 다양한 분야에서 사용되지만 요즘 운영 위험과 관련된 손실 분포를 추정함에 있어서 유용하게 사용되고 있다. 그런데, 임계치를 활용한 극단치 확률 함수 추정에 사용함에 있어 임계치의 선택에 따른 히스토그램의 모양 변화는 그 활용을 어렵게 하는 경향이 있다. 본 연구는 퍼지히스토그램을 손실에 대한 극단치 분포를 추정에 사용할 경우 임계치의 선택에 따른 전체적 모양의 차이가 일반적인 히스토그램 보다 크지 않아 상대적으로 안정된 분포를 추정할 수 있음을 보였다.

  • PDF

An Experimental Study of Image Thresholding Based on Refined Histogram using Distinction Neighborhood Metrics

  • Sengee, Nyamlkhagva;Purevsuren, Dalaijargal;tumurbaatar, Tserennadmid
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.87-92
    • /
    • 2022
  • In this study, we aimed to illustrate that the thresholding method gives different results when tested on the original and the refined histograms. We use the global thresholding method, the well-known image segmentation method for separating objects and background from the image, and the refined histogram is created by the neighborhood distinction metric. If the original histogram of an image has some large bins which occupy the most density of whole intensity distribution, it is a problem for global methods such as segmentation and contrast enhancement. We refined the histogram to overcome the big bin problem in which sub-bins are created from big bins based on distinction metric. We suggest the refined histogram for preprocessing of thresholding in order to reduce the big bin problem. In the test, we use Otsu and median-based thresholding techniques and experimental results prove that their results on the refined histograms are more effective compared with the original ones.

Color Similarity Definition Based on Quantized Color Histogram for Clothing Identification

  • Choi, Yoo-Joo;Moon, Nam-Mee
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.396-399
    • /
    • 2009
  • In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.

  • PDF

선택적 히스토그램 빈 기반 열화상 영상 전경 추출 (Foreground Extraction in Thermal Videos Based on Selective Histogram Bins)

  • 유광현;자히르;김진영;신도성
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.757-770
    • /
    • 2018
  • 열화상 영상기반 감시 시스템에서 전경추출은 매우 중요한 단계이다. 전경추출단계는 계산시간과 메모리 사용측면에서 시스템의 실시간 처리가 매우 효율적이어야 한다. 그러나 이러한 효율성은 ROI 탐지의 정확도와 매우 연관되어 있다. 본 논문에서 열화상 비디오 처리를 위하여 새로운 히스토그램 빈에 기반하여 배경과 전경을 분리하기 위한 두 가지 방법을 제시하는데, 이는 임의의 주어진 환경에서 열화상영상의 시간상에서 일관성을 갖는 다는 점과, 이러한 성질이, 간단한 시간축 메디안 필터링에 비하여 80%이상의 메모리를 절감할 수 있다.

Hierarchical sampling optimization of particle filter for global robot localization in pervasive network environment

  • Lee, Yu-Cheol;Myung, Hyun
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.782-796
    • /
    • 2019
  • This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.

실시간 평균 이동 추적 알고리즘의 성능 개선을 위한 히스토그램 평활화 기반 색-공간 양자화 기법 (Histogram Equalization Based Color Space Quantization for the Enhancement of Mean-Shift Tracking Algorithm)

  • 최장원;최윤식;김용구
    • 방송공학회논문지
    • /
    • 제19권3호
    • /
    • pp.329-341
    • /
    • 2014
  • 커널 기반 평균 이동 물체 추적(kernel-based mean-shift object tracking) 방법은 신뢰할 수 있는 물체 추적의 실시간 구현이 가능하기 때문에 최근 많은 관심을 받고 있다. 이 알고리즘은 표적 모델과 표적 후보 간의 히스토그램 유사성 비교를 통해 최적의 평균이동 벡터를 찾는데, 실시간 구현을 위해 대부분의 알고리즘에서는 색-공간의 균일 양자화를 수행한다. 하지만, 영상의 명암 분포가 편중되어 있는 경우 색-공간의 양자화 후 히스토그램 분포가 몇 몇 빈에 집중되기 때문에 히스토그램 유사성 비교의 정확도를 감소시키게 되고, 따라서 추적의 성능이 저하될 수 있다. 이러한 문제를 해결하기 위해 히스토그램 빈을 적응적으로 조절하는 비-균일 양자화 알고리즘이 제안되었으나 높은 복잡도로 인해 실시간 추적 알고리즘에 부적합한 단점을 갖고 있다. 이에 본 논문에서는 표적 모델에 대한 히스토그램 평활화를 수행한 후 색-공간의 균일 양자화를 수행하는 형태의 고속 비-균일 양자화 기법을 제안함으로써, 색-공간 양자화 후에도 표적 모델의 명암 분포가 전 색-영역에 고르게 분포되도록 함으로써 실시간 평균 이동 추적 기법의 추적 성능이 개선될 수 있도록 하였다. 제안하는 색-공간 양자화 기법을 통해 표적 모델과 비교 후보군 사이에 비교 대상이 되는 색 요소가 증가하게 되며, 보다 정확도 높은 히스토그램 유사성 결과를 얻을 수 있었다. 물체 추적용 영상을 통한 실험 결과, 제안하는 알고리즘은 복잡도 증가가 거의 발생하지 않는 동시에, 기존 비-균일 양자화 알고리즘 결과와 유사하거나 좀 더 나은 추적 결과를 보여주었다.

영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method)

  • 박정만;유기형;장세영;한득수;곽훈성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Hierarchical Cluster Analysis Histogram Thresholding with Local Minima

  • Sengee, Nyamlkhagva;Radnaabazar, Chinzorig;Batsuuri, Suvdaa;Tsedendamba, Khurel-Ochir;Telue, Berekjan
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.189-194
    • /
    • 2017
  • In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".

칼라 히스토그램 정제를 이용한 특징벡터 기반 영상 검색 알고리즘 (Image retrieval algorithm based on feature vector using color of histogram refinement)

  • 강지영;박종안;백정욱
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.376-379
    • /
    • 2008
  • 내용기반 영상검색(CBIR)에서 보다 효율적이고 빠른 영상검색을 위하여 본 논문에서는 칼라 히스토그램 정제를 이용한 특정벡터 기반 영상검색 알고리즘을 제안한다. RGB 칼라 이미지에서 각각의 R, G, B를 분할하고 히스토그램을 추출하여 16개의 영역(bin)으로 균일하게 분할한 다음 R, G, B 각각의 히스토그램에서 영역의 픽셀값을 계산하여 비교, 분석하고 그중 최고값을 추출한다. 그리고 R, G, B 각각의 영역의 최고값들을 이용하여 칼라 정보를 인덱스화 한 후 그 특정값을 이용한 영상 검색 기술을 수행한다. 본 논문에서 제안한 알고리즘은 효과적인 특정 추출을 위하여 각각의 R, G, B에서 추출 된 특정값을 특정벡터 테이블로 구성하여 입력 영상과 데이터베이스 영상을 비교하고 매칭도와 순위를 구하여 기존의 히스토그램만을 이용한 알고리즘 보다 더 나은 검색 결과를 확인하였다.

  • PDF