In this paper, we present a non-static color histogram method to retrieve clothing images that are similar to a query clothing. Given clothing area, our method automatically extracts major colors by using the octree-based quantization approach[16]. Then, a color palette that is composed of the major colors is generated. The feature of each clothing, which can be either a query or a database clothing image, is represented as a color histogram based on its color palette. We define the match color bins between two possibly different color palettes, and unify the color palettes by merging or deleting some color bins if necessary. The similarity between two histograms is measured by using the weighted Euclidean distance between the match color bins, where the weight is derived from the frequency of each bin. We compare our method with previous histogram matching methods through experiments. Compared to HSV cumulative histogram-based approach, our method improves the retrieval precision by 13.7 % with less number of color bins.
Journal of the Korean Data and Information Science Society
/
제20권4호
/
pp.705-712
/
2009
히스토그램이 활용의 간편성과 자료의 전체적 구조를 한 눈에 볼 수 있는 정보량을 제공하지만 히스토그램의 계급 구간의 설정에 따라 그 표현이 달라 질 수 있는 문제가 있다. 이러한 문제를 해결하기 위해 퍼지 개념을 활용한 히스토그램이 제안되었고 그 효과가 제시되었다 (Loquin과 Strauss, 2008). 히스토그램이 다양한 분야에서 사용되지만 요즘 운영 위험과 관련된 손실 분포를 추정함에 있어서 유용하게 사용되고 있다. 그런데, 임계치를 활용한 극단치 확률 함수 추정에 사용함에 있어 임계치의 선택에 따른 히스토그램의 모양 변화는 그 활용을 어렵게 하는 경향이 있다. 본 연구는 퍼지히스토그램을 손실에 대한 극단치 분포를 추정에 사용할 경우 임계치의 선택에 따른 전체적 모양의 차이가 일반적인 히스토그램 보다 크지 않아 상대적으로 안정된 분포를 추정할 수 있음을 보였다.
In this study, we aimed to illustrate that the thresholding method gives different results when tested on the original and the refined histograms. We use the global thresholding method, the well-known image segmentation method for separating objects and background from the image, and the refined histogram is created by the neighborhood distinction metric. If the original histogram of an image has some large bins which occupy the most density of whole intensity distribution, it is a problem for global methods such as segmentation and contrast enhancement. We refined the histogram to overcome the big bin problem in which sub-bins are created from big bins based on distinction metric. We suggest the refined histogram for preprocessing of thresholding in order to reduce the big bin problem. In the test, we use Otsu and median-based thresholding techniques and experimental results prove that their results on the refined histograms are more effective compared with the original ones.
In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.
열화상 영상기반 감시 시스템에서 전경추출은 매우 중요한 단계이다. 전경추출단계는 계산시간과 메모리 사용측면에서 시스템의 실시간 처리가 매우 효율적이어야 한다. 그러나 이러한 효율성은 ROI 탐지의 정확도와 매우 연관되어 있다. 본 논문에서 열화상 비디오 처리를 위하여 새로운 히스토그램 빈에 기반하여 배경과 전경을 분리하기 위한 두 가지 방법을 제시하는데, 이는 임의의 주어진 환경에서 열화상영상의 시간상에서 일관성을 갖는 다는 점과, 이러한 성질이, 간단한 시간축 메디안 필터링에 비하여 80%이상의 메모리를 절감할 수 있다.
This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.
커널 기반 평균 이동 물체 추적(kernel-based mean-shift object tracking) 방법은 신뢰할 수 있는 물체 추적의 실시간 구현이 가능하기 때문에 최근 많은 관심을 받고 있다. 이 알고리즘은 표적 모델과 표적 후보 간의 히스토그램 유사성 비교를 통해 최적의 평균이동 벡터를 찾는데, 실시간 구현을 위해 대부분의 알고리즘에서는 색-공간의 균일 양자화를 수행한다. 하지만, 영상의 명암 분포가 편중되어 있는 경우 색-공간의 양자화 후 히스토그램 분포가 몇 몇 빈에 집중되기 때문에 히스토그램 유사성 비교의 정확도를 감소시키게 되고, 따라서 추적의 성능이 저하될 수 있다. 이러한 문제를 해결하기 위해 히스토그램 빈을 적응적으로 조절하는 비-균일 양자화 알고리즘이 제안되었으나 높은 복잡도로 인해 실시간 추적 알고리즘에 부적합한 단점을 갖고 있다. 이에 본 논문에서는 표적 모델에 대한 히스토그램 평활화를 수행한 후 색-공간의 균일 양자화를 수행하는 형태의 고속 비-균일 양자화 기법을 제안함으로써, 색-공간 양자화 후에도 표적 모델의 명암 분포가 전 색-영역에 고르게 분포되도록 함으로써 실시간 평균 이동 추적 기법의 추적 성능이 개선될 수 있도록 하였다. 제안하는 색-공간 양자화 기법을 통해 표적 모델과 비교 후보군 사이에 비교 대상이 되는 색 요소가 증가하게 되며, 보다 정확도 높은 히스토그램 유사성 결과를 얻을 수 있었다. 물체 추적용 영상을 통한 실험 결과, 제안하는 알고리즘은 복잡도 증가가 거의 발생하지 않는 동시에, 기존 비-균일 양자화 알고리즘 결과와 유사하거나 좀 더 나은 추적 결과를 보여주었다.
From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.
In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".
내용기반 영상검색(CBIR)에서 보다 효율적이고 빠른 영상검색을 위하여 본 논문에서는 칼라 히스토그램 정제를 이용한 특정벡터 기반 영상검색 알고리즘을 제안한다. RGB 칼라 이미지에서 각각의 R, G, B를 분할하고 히스토그램을 추출하여 16개의 영역(bin)으로 균일하게 분할한 다음 R, G, B 각각의 히스토그램에서 영역의 픽셀값을 계산하여 비교, 분석하고 그중 최고값을 추출한다. 그리고 R, G, B 각각의 영역의 최고값들을 이용하여 칼라 정보를 인덱스화 한 후 그 특정값을 이용한 영상 검색 기술을 수행한다. 본 논문에서 제안한 알고리즘은 효과적인 특정 추출을 위하여 각각의 R, G, B에서 추출 된 특정값을 특정벡터 테이블로 구성하여 입력 영상과 데이터베이스 영상을 비교하고 매칭도와 순위를 구하여 기존의 히스토그램만을 이용한 알고리즘 보다 더 나은 검색 결과를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.