• Title/Summary/Keyword: Histogram analysis

Search Result 490, Processing Time 0.032 seconds

Clinical Application Analysis of 3D-CRT Methods Using Tomotherapy (토모테라피를 이용한 3차원 입체 조형 치료의 임상적 적용 분석)

  • Cho, Kang-Chul;Kim, Joo-Ho;Kim, Hun-Kyum;Ahn, Seung-Kwon;Lee, Sang-Kyoo;Yoon, Jong-Won;Cho, Jeong-Hee;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • This study investigates the case of clinical application for TomoDirect 3D-CRT(TD-3D) and TomoHelical 3D-CRT(TH-3D) with evaluating dose distribution for clinical application in each case. Treatment plans were created for 8 patients who had 3 dimensional conformal radiation therapy using TD-3D and TH-3D mode. Each patients were treated for sarcoma, CSI(craniospinal irradiaion), breast, brain, pancreas, spine metastasis, SVC syndrome and esophagus. DVH(dose volume histogram) and isodose curve were used for comparison of each treatment modality. TD-3D shows better dose distribution over the irradiation field without junction effect because TD-3D was not influenced by target length for sarcoma and CSI case. In breast case, dosimetric results of CTV, the average value of D 99%, D 95% were $49.2{\pm}0.4$ Gy, $49.9{\pm}0.4$ Gy and V 105%, V 110% were 0%, respectively. TH-3D with the dosimetric block decreased dose of normal organ in brain, pancreas, spine metastasis case. SCV syndrome also effectively decreased dose of normal organ by using dose block to the critical organs(spinal cord <38 Gy). TH-3D combined with other treatment modalities was possible to boost irradiation and was total dose was reduced to spinal cord in esophagus case(spinal cord <45 Gy, lung V 20 <20%). 3D-CRT using Tomotherapy could overcomes some dosimetric limitations, when we faced Conventional Linac based CRT and shows clinically proper dose distribution. In conclusion, 3D-CRT using Tomotherapy will be one of the effective 3D-CRT techniques.

Analysis on the Decrease of Planning Target Volume in the Case of Lung Radiation Surgery with the Application of Respiratory Gated Radiotherpy Method (폐암 환자의 방사선수술 시 호흡연동 방사선치료 방법의 적용을 통한 계획용표적체적 감소 효과 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mee-Sun;Jung, Jae-Uk
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2008
  • The application of a respiratory gated radiotherpy method to the lung radiation surgery was evaluated compared with the conventional method in which the whole tumor motion range is considered in the delineation of PTV (Planning target volume). The four dimensional CT simulation images were acquired for the five NSCLC (Non-small cell lung cancer) patients for radiation surgery. The respiratory gated plan was prepared with the 50% phase CT images and the conventional method was planned based on the ITV (Internal target volume) which include all the target volumes created in each phase CT images within a whole respiratory period. The DVH (Dose volume histogram) of OAR (Organ at risk) which calculated in each method was compared for the evaluation of the plan properness. The relative decrease of OARs' DVH were verified in the application of respiratory gated method. The average decrease rate were $16.88{\pm}9.97%$ in the bronchus, $34.13{\pm}19.15%$ in the spinal cord, $28.42{\pm}18.49%$ in the chest wall and $32.48{\pm}16.66%$ in the lung. Based on these results, we can verified the applicability and the effectiveness of the respiratory gated method in the lung radiation surgery.

  • PDF

A Methodology of Ship Detection Using High-Resolution Satellite Optical Image (고해상도 광학 인공위성 영상을 활용한 선박탐지 방법)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Lee, Min-Sun;Jang, Jae-Cheol;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • As the international trade increases, vessel traffics around the Korean Peninsula are also increasing. Maritime accidents hence take place more frequently in the southern coast of Korea where many big and small ports are located. Accidents involving ship collision and sinking result in a substantial human and material damage as well as the marine environmental pollution. Therefore, it is necessary to locate the ships quickly when such accidents occur. In this study, we suggest a new ship detection index by comparing and analyzing the reflectivity of each channel of the Korea MultiPurpose SATellite-2 (KOMPSAT-2) images of the area around the Gwangyang Bay. A threshold value of 0.1 is set based on a histogram analysis, and all vessels are detected when compared with RGB composite images. After selecting a relatively large ship as a representative sample, the distribution of spatial reflectivity around the ship is studied. Uniform shadows are detected on the northwest side of the vessel. This indicates that the sun is in the southeast, the azimuth of the actual satellite image is $144.80^{\circ}$, and the azimuth angle of the sun can be estimated using the shadow position. The reflectivity of the shadows is 0.005 lower than the surrounding sea and ship. The shadow height varies with the position of the bow and the stern, perhaps due to the relative heights of the ship deck and the structure. The results of this study can help search technology for missing vessels using optical satellite images in the event of a marine accident around the Korean Peninsula.

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Development of Avermectin $B_{1a}$ High-yielding Mutants through Rational Screening Srategy based on Understanding of Biosynthetic Pathway (생합성 경로의 이해를 통한 Avermectin $B_{1a}$ 고생산성 변이주 개발)

  • Song Sung Ki;Jeong Yong Seob;Chun Gie-Taek
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.376-382
    • /
    • 2005
  • Avermectin (AVM) $B_{1a}$ produced by Streptomyces avermitilis via polyketide pathway is a secondary metabolite with powerful anthelmintic and insecticidal activities, thus being used as an efficient agent in the field of agriculture and animal health. It has been reported that a precursor for AVM $B_{1a}$ biosynthesis was isoleucine and the biosynthetic pathway of AVM $B_{1a}$ was closely similar to that of fatty acid. Based on understanding of the biosynthetic pathway of AVM $B_{1a}$, we intended to screen various mutants resistant against O-methyl threonine (OMT), an isoleucine-anti metabolite, and/or mutants resistant against p-fluoro phenoxy acetic acid (pFAC), an inhibitor of fatty acid biosynthesis. It was inferred that these mutants could produce AVM $B_{1a}$ more efficiently, due to the acquired capability of not only overproducing isoleucine intracellularly but also channelling metabolized carbon-sources into the polyketide pathway, thus leading to enhanced biosynthesis of AVM $B_{1a}$. The resulting mutant (PFA-1 strain) resistant against 100 ppm of pFAC was able to produce approximately 42 fold higher amount of AVM $B_{1a}$ compared to the parallel mother strain (4,200 vs. 100 units/l). In addition, through the process of continuous strain improvement program carried out by gradually increasing the OMT concentration, it was possible to obtain a more attractive mutant with greater AVM $B_{1a}$ production capacity (9,000 units/l). Notable was that significantly higher producer (12,000 units/l) could be selected through further screening of the resistant mutants, this time, to even higher concentration of PFAC. Meanwhile, through the analysis of AVM Bla production histograms (i.e., number of strains according to their AVM $B_{1a}$ biosynthetic ability) for the earlier strains in comparison with the high producers having the characteristics of resistance to OMT and pFAC, it was found that production stability of the high-yielding producers were remarkably improved, as demonstrated by the fact that larger proportion of the mutated strains had greater capability of AVM $B_{1a}$ biosynthesis ($71\%$ in the range between 5,000 and 7,000 units/L; $47\%$ in the range between 6,000 and 7,000 units/l). Based on these consequences, it was concluded that the rational screening strategy based on the understanding of the biosynthetic pathway of AVM $B_{1a}$ was very effective in obtaining high-yielding mutants with the features of enhanced production stability.

Comparison of Anisotropic Analytic Algorithm Plan and Acuros XB Plan for Lung Stereotactic Ablative Radiotherapy Using Flattening Filter-Free Beams (비편평화여과기 빔을 이용한 폐 정위절제방사선치료를 위한 AAA와 Acuros XB 계산 알고리즘의 치료계획 비교)

  • Chung, Jin-Beom;Eom, Keun-Yong;Kim, In-Ah;Kim, Jae-Sung;Lee, Jeong-Woo;Hong, Semie;Kim, Yon-Lae;Park, Byung-Moon;Kang, Sang-Won;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.210-217
    • /
    • 2014
  • This study investigated the dosimetric effects of different dose calculation algorithm for lung stereotactic ablative radiotherapy (SABR) using flattening filter-free (FFF) beams. A total of 10 patients with lung cancer who were treated with SABR were evaluated. All treatment plans were created using an Acuros XB (AXB) of an Eclipse treatment planning system. An additional plans for comparison of different alagorithm recalcuated with anisotropic analytic algorithm (AAA) algorithm. To address both algorithms, the cumulative dose-volume histogram (DVH) was analyzed for the planning target volume (PTV) and organs at risk (OARs). Technical parameters, such as the computation times and total monitor units (MUs), were also evaluated. A comparison analysis of DVHs from these plans revealed the PTV for AXB estimated a higher maximum dose (5.2%) and lower minimum dose (4.2%) than that of the AAA. The highest dose difference observed 7.06% for the PTV $V_{105%}$. The maximum dose to the lung was also slightly larger in the AXB plans. The percentate volumes of the ipsilateral lung ($V_5$, $V_{10}$, $V_{20}$) receiving 5, 10, and 20 Gy were also larger in AXB plans than for AAA plans. However, these parameters were comparable between both AAA and AXB plans for the contralateral lung. The differences of the maximum dose for the spinal cord and heart were also small. The computation time of AXB plans was 13.7% shorter than that of AAA plans. The average MUs were 3.47% larger for AXB plans than for AAA plans. The results of this study suggest that AXB algorithm can provide advantages such as accurate dose calculations and reduced computation time in lung SABR plan using FFF beams, especially for volumetric modulated arc therapy technique.

Annotation Method based on Face Area for Efficient Interactive Video Authoring (효과적인 인터랙티브 비디오 저작을 위한 얼굴영역 기반의 어노테이션 방법)

  • Yoon, Ui Nyoung;Ga, Myeong Hyeon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.83-98
    • /
    • 2015
  • Many TV viewers use mainly portal sites in order to retrieve information related to broadcast while watching TV. However retrieving information that people wanted needs a lot of time to retrieve the information because current internet presents too much information which is not required. Consequentially, this process can't satisfy users who want to consume information immediately. Interactive video is being actively investigated to solve this problem. An interactive video provides clickable objects, areas or hotspots to interact with users. When users click object on the interactive video, they can see additional information, related to video, instantly. The following shows the three basic procedures to make an interactive video using interactive video authoring tool: (1) Create an augmented object; (2) Set an object's area and time to be displayed on the video; (3) Set an interactive action which is related to pages or hyperlink; However users who use existing authoring tools such as Popcorn Maker and Zentrick spend a lot of time in step (2). If users use wireWAX then they can save sufficient time to set object's location and time to be displayed because wireWAX uses vision based annotation method. But they need to wait for time to detect and track object. Therefore, it is required to reduce the process time in step (2) using benefits of manual annotation method and vision-based annotation method effectively. This paper proposes a novel annotation method allows annotator to easily annotate based on face area. For proposing new annotation method, this paper presents two steps: pre-processing step and annotation step. The pre-processing is necessary because system detects shots for users who want to find contents of video easily. Pre-processing step is as follow: 1) Extract shots using color histogram based shot boundary detection method from frames of video; 2) Make shot clusters using similarities of shots and aligns as shot sequences; and 3) Detect and track faces from all shots of shot sequence metadata and save into the shot sequence metadata with each shot. After pre-processing, user can annotates object as follow: 1) Annotator selects a shot sequence, and then selects keyframe of shot in the shot sequence; 2) Annotator annotates objects on the relative position of the actor's face on the selected keyframe. Then same objects will be annotated automatically until the end of shot sequence which has detected face area; and 3) User assigns additional information to the annotated object. In addition, this paper designs the feedback model in order to compensate the defects which are wrong aligned shots, wrong detected faces problem and inaccurate location problem might occur after object annotation. Furthermore, users can use interpolation method to interpolate position of objects which is deleted by feedback. After feedback user can save annotated object data to the interactive object metadata. Finally, this paper shows interactive video authoring system implemented for verifying performance of proposed annotation method which uses presented models. In the experiment presents analysis of object annotation time, and user evaluation. First, result of object annotation average time shows our proposed tool is 2 times faster than existing authoring tools for object annotation. Sometimes, annotation time of proposed tool took longer than existing authoring tools, because wrong shots are detected in the pre-processing. The usefulness and convenience of the system were measured through the user evaluation which was aimed at users who have experienced in interactive video authoring system. Recruited 19 experts evaluates of 11 questions which is out of CSUQ(Computer System Usability Questionnaire). CSUQ is designed by IBM for evaluating system. Through the user evaluation, showed that proposed tool is useful for authoring interactive video than about 10% of the other interactive video authoring systems.

Clinical Experience of Three Dimensional Conformal Radiation Therapy for Non-Small Cell Lung Cancer (비소세포성 폐암에서 3차원 입체조형 방사선 치료 성적)

  • Choi Eun Kyung;Lee Byong Yong;Kang One Chul;Nho Young Ju;Chung Weon Kuu;Ahn Seung Do;Kim Jong Hoon;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • Purpose : This prospective study has been conducted to assess the value of three dimensional conformal radiation therapy (3DCRT) for lung cancer and to determine its potential advantage over current treatment approaches. Specific aims of this study were to 1) find the most ideal 3DCRT technique 2) establish the maximum tolerance dose that can be delivered with 3DCRT and 3) identify patients at risk for development of radiation pneumonitis. Materials and Methods : Beginning in Nov. 1994, 95 patients with inoperable non-small cell lung cancer (stage I; 4, stage II; 1, stage IIIa; 14, stage IIIb; 76) were entered onto this 3D conformal trial Areas of known disease and elective nodal areas were initially treated to 45 Gy and then using 3DCRT technique 65 to 70 Gy of total dose were delivered to the gross disease. Sixty nine patients received 65 Gy of total dose and 26 received 70 Gy Seventy eight patients (82.1$\%$) also received concurrent MVP chemotherapy. 3DCRT plans were compared with 2D plans to assess the adequacy of dose delivery to target volume, dose volume histograms for normal tissue, and normal tissue complication Probabilities (NTCP). Results : Most of plans (78/95) were composed of non-coplanar multiple (4-8) fields. Coplanar segmented conformal therapy was used in 17 pateints, choosing the proper gantry angle which minimize normal lung exposure in each segment. 3DCRT gave the full dose to nearly 100$\%$ of the gross disease target volume in all patients. The mean NTCP for ipsilateral lung with 3DCRT (range; 0.17-0.43) was 68$\%$ of the mean NTCP with 2D treatment planning (range; 0.27-0.66). DVH analysis for heart showed that irradiated volume of heart could be significantly reduced by non-coplanar 3D approach especially in the case of left lower lobe lesion. Of 95 patients evaluable for response, 75 (79$\%$), showed major response including 25 (26$\%$) with complete responses and 50 (53$\%$) with partial responses. One and two rear overall survivals of stage III patients were 62.6$\%$ and 35.2$\%$ respectively. Twenty percent (19/95) of patients had pneumonitis; Eight patients had grade 1 pneumonitis and 11 other patients had grade 2. Comparison of the average of NTCP for lung showed a significant difference between patients with and without radiation pneumonitis. Average NTCP for Patients without complication was 62$\%$ of those with complications. Conclusions : This study showed that non-coplanar multiple fields (4-8) may be one of the ideal plans for 3DCRT for lung cancer. It also suggested that 3DCRT may provide superior delivery of high dose radiation with reduced risk to normal tissue and that NTCP can be used as a guideline for the dose escalation.

  • PDF

Comparison of CT based-CTV plan and CT based-ICRU38 plan in Brachytherapy Planning of Uterine Cervix Cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거한 치료계획의 비교)

  • Cho, Jung-Ken;Han, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as Point A, is still used widely. A 3-dimensional ICR plan based on CT image provides dose-volume histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planing system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume$(average{\pm}SD)$ of CTV, rectum and bladder in all of 11 patients is $21.8{\pm}6.6cm^3,\;60.9{\pm}25.0cm^3,\;111.6{\pm}40.1cm^3$ respectively. The volume covered by 100% isodose curve is $126.7{\pm}18.9cm^3$ in ICRU plan and $98.2{\pm}74.5cm^3$ in CTV plan(p=0.0001), respectively. In (On) ICRU planning, $22.0cm^3$ of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of $62.2{\pm}4.8cm^3$ other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was $90.1{\pm}21.3%$ and $68.7{\pm}26.6%$ in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was $86.4{\pm}18.3%$ and $76.9{\pm}15.6%$ in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was $137.2{\pm}50.1%,\;101.1{\pm}41.8%$ in ICRU plan and $107.6{\pm}47.9%,\;86.9{\pm}30.8%$ in CTV plan, respectively. Therefore, the radiation dose to normal organ was lower in CTV plan than in ICRU plan. But the normal tissue dose was remarkably higher than a recommended dose in CTV plan in one patient whose residual tumor size was greater than 4cm. The volume of rectum receiving more than 80% isodose (V80rec) was $1.8{\pm}2.4cm^3$ in ICRU plan and $0.7{\pm}1.0cm^3$ in CTV plan(p=0.02). The volume of bladder receiving more than 80% isodose(V80bla) was $12.2{\pm}8.9cm^3$ in ICRU plan and $3.5{\pm}4.1cm^3$ in CTV plan(p=0.005). According to these parameters, CTV plan could also save more normal tissue compared to ICRU38 plan. Conclusion : An unnecessary excessive radiation dose is irradiated to normal tissues within 100% isodose area in the traditional ICRU plan in case of a small size of cervix cancer, but if we use CTV plan based on CT image, the normal tissue dose could be reduced remarkably without a compromise of tumor dose. However, in a large tumor case, we need more research on an effective 3D-planing to reduce the normal tissue dose.