• Title/Summary/Keyword: Histogram Comparison

Search Result 195, Processing Time 0.019 seconds

An Identification Method of Detrimental Video Images Using Color Space Features (컬러공간 특성을 이용한 유해 동영상 식별방법에 관한 연구)

  • Kim, Soung-Gyun;Kim, Chang-Geun;Jeong, Dae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2807-2814
    • /
    • 2011
  • This paper proposes an identification algorithm that detects detrimental digital video contents based on the color space features. In this paper, discrimination algorithm based on a 2-Dimensional Projection Maps is suggested to find targeted video images. First, 2-Dimensional Projection Maps which is extracting the color characteristics of the video images is applied to extract effectively detrimental candidate frames from the videos, and next estimates similarity between the extracted frames and normative images using the suggested algorithm. Then the detrimental candidate frames are selected from the result of similarity evaluation test which uses critical value. In our experimental test, it is suggested that the results of the comparison between the Color Histogram and the 2-Dimensional Projection Maps technique to detect detrimental candidate frames. Through the various experimental data to test the suggested method and the similarity algorithm, detecting method based on the 2-Dimensional Projection Maps show more superior performance than using the Color Histogram technique in calculation speed and identification abilities searching target video images.

Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns (회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식)

  • Hwang, Min-Chul;Ko, Byoung Chul;Nam, Jae-Yeal
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 2016
  • In this paper, we focus on recognition of speed-limit signs among a few types of traffic signs because speed-limit sign is closely related to safe driving of drivers. Although histogram of oriented gradient (HOG) and local binary patterns (LBP) are representative features for object recognition, these features have a weakness with respect to rotation, in that it does not consider the rotation of the target object when generating patterns. Therefore, this paper propose the fast rotation-invariant binary patterns (FRIBP) algorithm to generate a binary pattern that is robust against rotation. The proposed FRIBP algorithm deletes an unused layer of the histogram, and eliminates the shift and comparison operations in order to quickly extract the desired feature. The proposed FRIBP algorithm is successfully applied to German Traffic Sign Recognition Benchmark (GTSRB) datasets, and the results show that the recognition capabilities of the proposed method are similar to those of other methods. Moreover, its recognition speed is considerably enhanced than related works as approximately 0.47second for 12,630 test data.

Contrast Enhancement of Remotely Sensed Images Using Histogram Equalization (히스토그램 평활화를 이용한 원격감지 영상의 콘트라스트 향상)

  • Seo, Yong-Su
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.13-19
    • /
    • 2003
  • In this paper we discussed the processing procedures of histogram equalization(HE) method and brightness preserving bi-histogram equalization(BBHE) method in the contrast enhancement methods for the performance comparison. With remotely sensed image data of Landsat TM we compared the performances of three methods of Min-Max method, HE method, BBHE method. The experimental results demonstrate that the HE method and BBHE method are more effective in the contrast enhancement performances than the Min-Max method. In the HE method the mean brightness of the resultant output images approached to the middle gray level with regardless of input image mean. In the BBHE method, it is capable of preserving the mean brightness of a original image compared to the HE method while enhancing the contrast of original image effectively. Thus BBHE method is provided more natural enhancement effect than the HE method.

  • PDF

Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast (색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출)

  • Kim, Seong-Hyun;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.

Decision of Adaptive Threshold Value Using Histogram in Differential Image (차영상에서의 히스토그램을 이용한 적응적 임계값 결정)

  • 오명관;김태익;최동진;전병민
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.91-97
    • /
    • 2004
  • Difference image scheme is widely used for motion estimation in moving object tracking system. This scheme contains a binarization step which segments image into background and moving object regions, referring to threshold value. In this paper, we propose a decision algorithm of tracking the threshold value with a differential image. The key idea is analyzing the histogram of the differential image. In addition we evaluate the performance of this method in comparison with conventional scheme. As an experimental result with 60 images, it is found that threshold by the proposed algorithm is very close to optimal threshold selected manually.

  • PDF

A Recognition of the Printed Alphabet by Using Nonogram Puzzle (노노그램 퍼즐을 이용한 인쇄체 영문자 인식)

  • Sohn, Young-Sun;Kim, Bo-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.451-455
    • /
    • 2008
  • In this paper we embody a system that recognizes the printed alphabet of two font types (Batang, Dodum) inputted by a black-and-white CCD camera and converts it into an editable text form. The image of the inputted printed sentences is binarized, then the rows of each sentence are separated through the vertical projection using the Histogram method, and the height of the characters are normalized to 48 pixels. With the reverse application of the basic principle of the Nonogram puzzle to the individual normalized character, the character is covered with the pixel-based squares, representing the characteristics of the character as the numerical information of the Nonogram puzzle in order to recognize the character through the comparison with the standard pattern information. The test of 2609 characters of font type Batang and 1475 characters of font type Dodum yielded a 100% recognition rate.

Detection of Surface Cracks in Eggshell by Machine Vision and Artificial Neural Network (기계 시각과 인공 신경망을 이용한 파란의 판별)

  • 이수환;조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • A machine vision system was built to obtain single stationary image from an egg. This system includes a CCD camera, an image processing board and a lighting system. A computer program was written to acquire, enhance and get histogram from an image. To minimize the evaluation time, the artificial neural network with the histogram of the image was used for eggshell evaluation. Various artificial neural networks with different parameters were trained and tested. The best network(64-50-1 and 128-10-1) showed an accuracy of 87.5% in evaluating eggshell. The comparison test for the elapsed processing time per an egg spent by this method(image processing and artificial neural network) and by the processing time per an egg spent by this method(image processing and artificial neural network) and by the previous method(image processing only) revealed that it was reduced to about a half(5.5s from 10.6s) in case of cracked eggs and was reduced to about one-fifth(5.5s from 21.1s) in case of normal eggs. This indicates that a fast eggshell evaluation system can be developed by using machine vision and artificial neural network.

  • PDF

Content-based Image Retrieval System (내용기반 영상검색 시스템)

  • Yoo, Hun-Woo;Jang, Dong-Sik;Jung, She-Hwan;Park, Jin-Hyung;Song, Kwang-Seop
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.363-375
    • /
    • 2000
  • In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.

  • PDF

Deep Learning based Human Recognition using Integration of GAN and Spatial Domain Techniques

  • Sharath, S;Rangaraju, HG
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.127-136
    • /
    • 2021
  • Real-time human recognition is a challenging task, as the images are captured in an unconstrained environment with different poses, makeups, and styles. This limitation is addressed by generating several facial images with poses, makeup, and styles with a single reference image of a person using Generative Adversarial Networks (GAN). In this paper, we propose deep learning-based human recognition using integration of GAN and Spatial Domain Techniques. A novel concept of human recognition based on face depiction approach by generating several dissimilar face images from single reference face image using Domain Transfer Generative Adversarial Networks (DT-GAN) combined with feature extraction techniques such as Local Binary Pattern (LBP) and Histogram is deliberated. The Euclidean Distance (ED) is used in the matching section for comparison of features to test the performance of the method. A database of millions of people with a single reference face image per person, instead of multiple reference face images, is created and saved on the centralized server, which helps to reduce memory load on the centralized server. It is noticed that the recognition accuracy is 100% for smaller size datasets and a little less accuracy for larger size datasets and also, results are compared with present methods to show the superiority of proposed method.

Reduced-Reference Quality Assessment for Compressed Videos Based on the Similarity Measure of Edge Projections (에지 투영의 유사도를 이용한 압축된 영상에 대한 Reduced-Reference 화질 평가)

  • Kim, Dong-O;Park, Rae-Hong;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.37-45
    • /
    • 2008
  • Quality assessment ai s to evaluate if a distorted image or video has a good quality by measuring the difference between the original and distorted images or videos. In this paper, to assess the visual qualify of a distorted image or video, visual features of the distorted image are compared with those of the original image instead of the direct comparison of the distorted image with the original image. We use edge projections from two images as features, where the edge projection can be easily obtained by projecting edge pixels in an edge map along vertical/horizontal direction. In this paper, edge projections are obtained by using vertical/horizontal directions of gradients as well as the magnitude of each gradient. Experimental results show the effectiveness of the proposed quality assessment through the comparison with conventional quality assessment algorithms such as structural similarity(SSIM), edge peak signal-to-noise ratio(EPSNR), and edge histogram descriptor(EHD) methods.