• 제목/요약/키워드: Histidine Biosynthesis

검색결과 18건 처리시간 0.02초

Streptomyces tubercidicus에서 Adenine과 Histidine에 의한 Tubercidin 생합성 조절 (Regulation of Tubercidin Biosynthesis in Streptomyces tubercidicus by Adenine and Histidine)

  • 유진철;하영칠
    • 미생물학회지
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 1991
  • The regulatory mechanism of tubercidin biosynthesis in Streptomyces tubercidicus was studied. In a wild type strain, addition of adenine and histidine into the medium decreased the tubercidin production by 60-65% and 40%, respectively. The effects of adenine and histidine were alleviated by the addition of inosine monophosphate and 5-aminoimidazole-4-carboxamide ribotide. The production of tubercidin in S. tubercidicus K115 strain ($ade^{-}$ ) was nearly shut off by histidine. In contrast with K115 strain, adenine inhibited the tubercidin biosynthesis in S. tubercidicus K412 strain ($his^{-}$. In S. tubercidicus F667 strain ($ade^{-}$ , $his^{-}$ ), tubercidin production was increased by adenine and histidine. From the effects of adenine and histidine on tubercidin biosynthesis in S. tubercidicus wild type and mutant strains, it became known that feedback control by adenine and histidine of biosynthetic pathwat for purine ribonucleotide and histidine are involved in the regulation of tubercidin biosynthesis.

  • PDF

Functional Analysis of a Histidine Auxotrophic Mutation in Gibberella zeae

  • Seo, Back-Won;Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2007
  • A plant pathogenic fungus, Gibberella zeae (anamorph: Fusarium graminearum), not only generates economic losses by causing disease on cereal grains, but also leads to severe toxicosis in human and animals through the production of mycotoxins in infected plants. Here, we characterized a histidine auxotrophic mutant of G. zeae, designated Z43R1092, which was generated using a restriction enzyme-mediated integration (REMI) procedure. The mutant exhibited pleiotropic phenotypic changes, including a reduction in mycelial growth and virulence and loss of sexual reproduction. Outcrossing analysis confirmed that the histidine auxotrophy is linked to the insertional vector in Z43R1092. Molecular analysis showed that the histidine requirement of Z43R1092 is caused by a disruption of an open reading frame, designated GzHIS7. The deduced product of GzHIS7 encodes a putative enzyme with an N-terminal glutamine amidotransferase and a C-terminal cyclase domain, similar to the Saccharomyces cerevisiae HIS7 required for histidine biosynthesis. The subsequent gene deletion and complementation analyses confirmed the functions of GzHIS7 in G. zeae. This is the first report of the molecular characterization of histidine auxotrophy in G. zeae, and our results demonstrate that correct histidine biosynthesis is essential for virulence, as well as sexual development, in G. zeae. In addition, our results could provide a G. zeae histidine auxotroph as a recipient strain for genetic transformation using this new selectable marker.

Corynebacterium glutamicum에서의 glutamate계 아미노산 생합성의 유전적 조절 (Genetic regulation for the biosynthesis of glutamate family in Corynebacterium glutamicum)

  • Kim In-Ju;Kyung Hee Min;Sae Bae Lee
    • 한국미생물·생명공학회지
    • /
    • 제14권5호
    • /
    • pp.427-432
    • /
    • 1986
  • The regulation of three ammonia assimilatory enzymes, GDH (glutamate dehydrogenase), GS (glutamine synthetase) and GOGAT (glutamate synthase), has been examined in C. glutamicum. Three kinds of arginine auxotrophs blocked in each step of arginine biosynthetic pathway from glutamate were selected as arg 5, arg 6, arg 8. Histidine and tryptophan auxotrophs were also selected because histidine and tryptophan repressed GS biosynthesis in E. coli. These strains were cultured on the media containing nitrogen-excess and limited conditions, to compare the specific activities of ${\alpha}$-ketoglutarate dehydrogenase(${\alpha}-KGDH$), GDH, GS, GOGAT from the cell-free extracts. These results showed that enzyme levels of ${\alpha}-KGDH$ and GDH from 3 kinds of arginine auxotrophs, histidine and tryptophan auxotrophs in nitrogen-excess condition and those of GS and GOGAT in nitrogen limited condition were increased compared with opposite condition. The tryptophan and histidine auxotrophs showed higher level of glutamate and glutamine than parental strains and other mutants. it is assumed that the higher levels of ${\alpha-KGDH}$ and GDH from mutants in nitrogen-excess condition promoted the accumulation of glutamate and glutamine in fermentation broth. The inhibition of GS activities by ADP suggested that GS is regulated by energy charge in C. glutamicum. The results with histidine, tryptophan, glycine, alanine, serine and GMP implied that a system of feedback inhibition were effective. The GDH, GS and GOGAT biosynthesis in culture broth was markedly repressed by the nature and kinds of available nitrogen sources such as tryptophan, proline, glycine, alanine, serine and tyrosine.

  • PDF

Essentiality of Histidine in Ruminant and Other Animals Including Human Beings

  • Onodera, Ryoji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.445-454
    • /
    • 2003
  • Concept and establishment of essential amino acids in animals and human beings rendered immeasurable contributions to animal production and human health. In ruminant animals, however, essential amino acids have never been completely established. The present review proposes a hypothesis that histidine may not be an essential amino acid for normal growing cattle (Japanese black) at least at the growing stage after about 450 kg of body weight on the basis of the experimental results of histidinol dehydrogenase activities in some tissues of the cattle together with hints from which the hypothesis was derived. At the same time, histidinol dehydrogenase activities in liver, kidney and muscle of swine, mouse, fowl and wild duck will be shown and the essentiality of histidine in these animals will be discussed. Finally, the essentiality of histidine for adult human will briefly be discussed.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질 (Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola)

  • 배무;권혜영
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.14-20
    • /
    • 1991
  • Pseudomonas syringae의 intact cell에서 에틸렌 생성을 극대화 하기 위한 전환조건은 $30^{\circ}C$. pH7.5로 조사되었고, 다양한 기질의 전환효과를 검초한 결과, Asn>Gln>Asp>Glu>$\alpha$-KG>citrate>oxalacetate의 순으로 많은양의 에틸렌을 생성하였다. 또한, arginine과 histidine을 상기 유기산과 함께 넣었을 때 에틸렌 생성에 현저한 상승효과를 나타냈다. Cell-free system 에서는 $\alpha$-KG>Glu>citrate>Gln>Ser순으로 0.5mM $\alpha$-KG에서 310.8(nl.mg $protein^[-1}.h^[-1}$)로 가장 많은 에틸렌을 생성하였고, aminotransferse 억제제인 AOA를 사용해 본 결과, Glu는 glutamate dehydrogenase에 의하여 $\alpha$-KG를 거쳐서 에틸렌으로 전환된 것이라 생각된다.

  • PDF

Klebsiella pneumoniae에서 트립토판 생산증대를 위한 숙주개발 및 재조합 trp plasmid의 발현 (Modigication of host cells and Expression of Recombinant E. coli trp plasmids for the increased Production of Tryptophan in Klebsiella pneumoniae)

  • 지연태;홍광원;박장현;이세영
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.46-51
    • /
    • 1987
  • In order to increase the production of tryptophan by maximizing expression of recombinant trp plasmid, Klebsiella pneumoniae KC 105(pheA tyrA trpE trpR tyrR) was genetically modified. KC 107, inosine monophospate(IMP) auxotroph from KC 105 and KC 108, histidine(His) auxotroph from KC 107 were also derived respectively to increase phosphoribosylpyrophosphate(PRPP) production which is required for tryptophan biosynthesis. From KC 107 phosphoribosylpyrophosphate consumption which is required for tryptophan biosynthesis. From KC 107 and KC 108, KC 109 and KC 110, both arginine auxotrophs were derived respectively. To investigate the expression of recombinant trp plasmid in the selected K. pneumoniae mutants, the auxotrophic mutants were transformed with recombinant trp plasmids pSC 101-$trpE^{FBR}$, pSC 101-trpL(.DELTA.att) $trpE^{FBR}$ (pSC 101-trp-AF). Amount of tryptophan produced and activities of tryptophan synthase of $trpR^{-}$ mutant (KC 100) and $tyrR^{-}$ mutnat(KC 105) containing recombinant plasmid pSC 101-trp operon were increased by 30-40% as compared with KC 99(pheA tyrA trpE) containing recombinant plasmid pSC 101-trp operon. Activities of tryptophan synthase and production of tryptophan of KC 108 ($His^{-}$) and KC 109($Arg^{-}$) containing recombinant plasmid pSC 101-trp operon were increase by two-fold as compared with KC 107 containing pSC 101-trp operon.

  • PDF

Aspergillus terreus의 발효조건이 lovastatin 생산에 미치는 영향 (Effect of Fermentation Conditions on the Production of Lovastatin by Aspergillus terreus)

  • 김병곤;전계택;정용섭
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.507-513
    • /
    • 2000
  • 고지혈증 치료제인 lovastatin을 Aspergillus terreus로부터 생산하기 위해 발효조 배양설험에서 교반속도와 pH에 대한 영향올 조사하였다. 최적 교반속도는 400 rpm이었고 pH는 5.8로 유지하였을 때 lovastatin 생산이 최대였으며, 교반속도 보다 pH가 lovastatin 생산에 더 많은 영향을 미치는 것으로 나타났다 L-tryptop뼈n과 L-histi빼le의 첨가시기에 따른 lovastatin 생산량을 실험한 결과, 둘다 발효초기부터 첨가하여 배양하 는 것이 효과적이었다 L-tryptophan을 발효초기에 첨가한 최 적배지와 최적 환경조건인 교반속도 400 rpm, pH 5.8에서 회 분식 배양을 수행한 결과 기본배지를 이용하여 실험한 배양 결과보다 약 10배 정도 많은 836 mg/L이었고, 생산성은 3.5 mg/L.hr였다

  • PDF

Nutritional Studies on the Growth of the Rapamycin-Producing Streptomyces hygroscopicus

  • Kim, Wan-Seop;Davis, Sean;Wong, Grace;Demain, Arnold-L.
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.560-563
    • /
    • 2003
  • During our previous studies on the relationship between nutrient requirements of S. hygroscopicus C9 and rapamycin biosynthesis, we developed chemically-defined media containing among other nutrients, aspartic acid, arginine, histidine, or ammonium sulfate. However, these media (“Cheng et al. medium” and “Lee et al. medium”) showed very slow growth characterized by a very long lag phase of growth. In an attempt to develop a chemically-defined or semi-defined medium to support more rapid growth and increased cell production, we have carried out studies to shorten the lag phase. Of the various additives tested, vitamin-free casein acid hydrolysate was the most significant by shortening the lag phase by 2-3 days. Mixtures of amino acids failed to replace casein acid hydrolysate. The active principle passed through an ultrafilter with a molecular weight cutoff of 1,000 and thus may be a peptide. The present work has yielded a semi-defined medium which should be useful for further growth studies on S. hygroscopicus C9.

Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila

  • Agarwal, Shivani;Mishra, Neeraj;Agarwal, Shivangi;Dixit, Aparna
    • BMB Reports
    • /
    • 제43권6호
    • /
    • pp.419-426
    • /
    • 2010
  • Aeromonas hydrophila is a bacterial pathogen that infects a large number of eukaryotes, including humans. The UDP-galactose 4'-epimerase (GalE) catalyzes interconversion of UDP-galactose to UDP-glucose and plays a key role in lipopolysaccharide biosynthesis. This makes it an important virulence determinant, and therefore a potential drug target. Our earlier studies revealed that unlike other GalEs, GalE of A. hydrophila exists as a monomer. This uniqueness necessitated elucidation of its structure and active site. Chemical modification of the 6xHis-rGalE demonstrated the role of histidine residue in catalysis and that it did not constitute the substrate binding pocket. Loss of the 6xHis-rGalE activity and coenzyme fluorescence with thiol modifying reagents established the role of two distinct vicinal thiols in catalysis. Chemical modification studies revealed arginine to be essential for catalysis. Site-directed mutagenesis indicated Tyr149 and Lys153 to be involved in catalysis. Use of glycerol as a cosolvent enhanced the GalE thermostability significantly.