• 제목/요약/키워드: Histaminergic receptors

검색결과 6건 처리시간 0.028초

흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향 (Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland)

  • 임동윤;노상현
    • 대한약리학회지
    • /
    • 제29권1호
    • /
    • pp.43-55
    • /
    • 1993
  • 흰쥐 관류부신에서 histamine의 catecholamine (CA) 분비작용의 특성과 기전을 규명코자 연구한 결과는 다음과 같다. Histamine $(37.5{\sim}150\;{\mu}g)$을 부신정맥내에 주사 하였을 때 현저한 용량 의존성의 CA 분비작용을 나타내었다. 그러나 histamine $(150\;{\mu}g)$을 120분 간격으로 반복 투여시 제 3차 투여시부터는 CA 분비효과가 뚜렷이 감소하였다. 즉, histamine의 반복투여로 인한 반응급강현상을 관찰할 수 있었다. Histamine의 CA 분비작용은 chlorisondamine, diphenhydrarmine, ranitidine, $Ca^{++}-free$ Krebs 용액의 관류, nicardipine 및 TMB-8 등의 전처치로 유의하게 억제 되었으나 pirenzepine의 전처치에 의해서는 별다른 영향을 받지 않았다. 더우기 histamine $(6.8{\times}10^{-5}M)$으로 30분간 관류시킨 후에 ACh $(50{\mu}g)$의 CA 분비작용이 상당히 억제됨을 나타내었다. 이상과 같은 연구 결과로 보아 histamine은 흰쥐 적출관류 부신에서 현저한 CA 분비작용을 나타내었으며 칼슘 의존성이었다. 이러한 CA 분비작용은 $H_1-$$H_2-$ 양수용체의 활성화를 통해서 일어나며 또한 부신의 nicotine 수용체와도 관련성이 있는 것으로 사료된다.

  • PDF

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice

  • Zakaria, Zainul Amiruddin;Sodri, Nurul Husna;Hassan, Halmy;Anuar, Khairiyah;Abdullah, Fatimah Corazon
    • 셀메드
    • /
    • 제2권4호
    • /
    • pp.38.1-38.6
    • /
    • 2012
  • The present study aimed to determine the possible mechanisms of the peripheral antinociception of the aqueous extracts of Dicranopteris linearis (AEDL), Melastoma malabathricum (AEMM) and Bauhinia purpurea (AEBP) leaves in mice. Briefly, the antinociceptive profile of each extract (300, 500, and 1000 mg/kg; subcutaneous (s.c.)), was established using the abdominal constriction test. A single dose (500 mg/kg) of each extract (s.c.) was pre-challenged for 10 min with various pain receptors' antagonists or pain mediators' blockers and 30 min later subjected to the antinociceptive assay to determine the possible mechanism(s) involved. Based on the results obtained, all extracts exerted significant (p < 0.05) antinociceptive activity with dose-dependent activity observed only with the AEMM. Furthermore, the antinociception of AEDL was attenuated by naloxone, atropine, yohimbine and theophylline; AEMM was reversed by yohimbine, theophylline, thioperamide, pindolol, reserpine, and 4-chloro-DL-phenylalanine methyl ester hydrochloride; and of AEBP was inhibited by naloxone, haloperidol, yohimbine and reserpine. In conclusion, the antinociceptive activity of those extracts possibly involved the activation of several pain receptors (i.e. opioids, muscarinic, ${\alpha}_2$-adrenergic and adenosine receptors, adenosine, H3-histaminergic and $5HT_{1A}$, dopaminergic receptors).

Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과 (Xylazine-induced depression and its antagonism by α-adrenergic blocking agents)

  • 김충희;하대식;김양미;김종수
    • 대한수의학회지
    • /
    • 제33권1호
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

심장에서 세포내 Mg2+ 농도 의존적 Mg2+ 유리 (Intracellular Mg2+ concentration dependent Mg2+ release in the hearts)

  • 백성수;김상진;김진상
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.291-299
    • /
    • 2000
  • Magnesium ($Mg^{2+}$) transport across the plasma membrane of cardiac myocytes appears to be under hormonal control. Repeated stimulations with adrenergic or histaminergic agonist produced a progressive decrease in $Mg^{2+}$ efflux from hearts. Thus we hypothesized that the $Mg^{2+}$ efflux may be resulted from a down-regulation of receptors or from a depletion of $Mg^{2+}$ from intracellular pool(s) in the hearts. In the present study, the regulation of $Mg^{2+}$ homeostasis by receptor stimulation was studied in perfused rat and guinea pig hearts. The successive short addition of norepinephrine (NE) to rat and guinea pig, and of histamine (HT) to perfused guinea pig hearts induced a progressive decrease in $Mg^{2+}$ efflux. These $Mg^{2+}$ effluxes were blocked by propranolol or ranitidine, respectively. These decrease in $Mg^{2+}$ efflux were inhibited by sodium cyanide (NaCN), which increases intracellular $Mg^{2+}$ ($[Mg^{2+}]_i$) levels. When NE (or HT) was added after HT (or NE), this efflux was also decreased in the guinea pig hearts. In the rat hearts and myocytes, HT did not stimulate $Mg^{2+}$ efflux. But NE produced a large $Mg^{2+}$ efflux after stimulation with HT. 8-(4-Chlorophenylthio)-adenosine cAMP (cAMP), like NE and HT, also induced a progressive decrease in $Mg^{2+}$ efflux in guinea pig hearts. This effect was inhibited by NaCN. These data provide evidence that the progressive decrease in receptor-stimulated $Mg^{2+}$ efflux is considered to be due to a decrease in $[Mg^{2+}]_i$ levels rather than receptor down-regulation.

  • PDF

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF