• Title/Summary/Keyword: His-tagged protein

Search Result 66, Processing Time 0.031 seconds

ELISA detection of IgG antibody against a recombinant major surface antigen (Nc-p43) fragment of Neospora caninum in bovine sera

  • Ahn, Hye-Jin;Kim, Sera;Kim, Dae-Yong;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.3
    • /
    • pp.175-177
    • /
    • 2003
  • An ELISA was established to measure bovine IgG directed against the recombinant antigenic determinant of Nc-p43, a major surface antigen of Neospora caninum. In a previous study, two thirds of the C-terminal of the molecule was expressed as a $6{\;}{\times}{\;}His$ tagged protein (Ncp43p) for ELISA using 2/3 of the N-terminal of SAG1 from Toxoplasma gondii as a control (TgSAG1A). Among 852 cattle sera collected from stock farms scattered nation-wide, 103 sera (12.1%) were found to react with Ncp43p positively, but no positive reaction was observed with TgSAG1A. This study shows that Ncp43p could be available as an efficient antigen for the diagnosis of neosporosis in cattle. Furthermore, it together with TgSAG1A, could be useful for the differential diagnosis of N. caninum and T.gondii infections in other mammals.

Biochemical and Biophysical Characterizations of the Interaction between Two PDZ Adapter Proteins NHERF and E3KARP in vitro

  • Hwang, Eun-Young;Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3241-3246
    • /
    • 2010
  • NHERF ($Na^+/H^+$ exchanger regulatory factor) and E3KARP (NHE3 kinase A regulatory protein) play important roles in membrane targeting, trafficking and sorting of ion channels, transmembrane receptors and signaling proteins in many tissues. Each of these proteins contains two PDZ (PSD-95/Dlg-1/ZO-1) domains, which mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The interaction between NHERF and E3KARP was investigated by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, His-tagged pull-down experiment, and size-exclusion column (SEC) chromatography. BIAcore experiments revealed that NHERF bound to E3KARP with an apparent $K_D$ of 7 nM. Fluorescence emission spectra of the NHERF-E3KARP complex suggested that the tight interaction between these proteins was accompanied by significant conformational changes in one or both. The CD spectra of NHERF and E3KARP show that the conformational changes of these proteins were dependent on pH and temperature. These results implicate that the NHERF-E3KARP complex allows intracellular signaling complexes to form through PDZ-PDZ interactions.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

Effects of Newly Synthesized Recombinant Human Amyloid-β Complexes and Poly-Amyloid-β Fibers on Cell Apoptosis and Cognitive Decline

  • Park, Soojin;Huh, Jae-Won;Eom, Taekil;Park, Naeun;Lee, Youngjeon;Kim, Ju-Sung;Kim, Sun-Uk;Shim, Insop;Lee, Sang-Rae;Kim, Ekyune
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2044-2051
    • /
    • 2017
  • The main pathological hallmark of Alzheimer's disease is the deposition of amyloid-beta ($A{\beta}$) peptides in the brain. $A{\beta}$ has been widely used to mimic several aspects of Alzheimer's disease. However, several characteristics of amyloid-induced Alzheimer's disease pathology are not well established, especially in mice. The present study aimed to develop a new Alzheimer's disease model by investigating how $A{\beta}$ can be effectively aggregated using prokaryotes and eukaryotes. To express the $A{\beta}42$ complex in HEK293 cells, we cloned the $A{\beta}42$ region in a tandem repeat and incorporated the resulting construct into a eukaryotic expression vector. Following transfection into HEK293 cells via lipofection, cell viability assay and western blotting analysis revealed that exogenous $A{\beta}42$ can induce cell death and apoptosis. In addition, recombinant His-tagged $A{\beta}42$ was successfully expressed in Escherichia coli BL21 (DE3) and not only readily formed $A{\beta}$ complexes, but also inhibited the proliferation of SH-SY5Y cells and E. coli. For in vivo testing, recombinant His-tagged $A{\beta}42$ solution ($3{\mu}g/{\mu}l$ in $1{\times}PBS$ containing $1mM\;Ni^{2+}$) was injected stereotaxically into the left and right lateral ventricles of the brains of C57BL/6J mice (n = 8). Control mice were injected with $1{\times}PBS$ containing $1mM\;Ni^{2+}$ following the same procedure. Ten days after the sample injection, the Morris water maze test confirmed that exogenous $A{\beta}$ caused an increase in memory loss. These findings demonstrated that $Ni^{2+}$ is capable of complexing the 50-kDa amyloid and that intracerebroventricular injection of $A{\beta}42$ can lead to cognitive impairment, thereby providing improved Alzheimer's disease models.

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP (막 전위 감지 탈인산화 효소, Ci-VSP의 유사 탈인산화 효소 도메인의 발현과 정제)

  • Kim, Sung-Jae;Kim, Hae-Min;Choi, Hoon;Kim, Young-Jun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1032-1038
    • /
    • 2011
  • Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.

Expression of Hepatitis B Virus S Gene in Pichia pastoris and Application of the Product for Detection of Anti-HBs Antibody

  • Hu, Bo;Liang, Minjian;Hong, Guoqiang;Li, Zhaoxia;Zhu, Zhenyu;Li, Lin
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.683-689
    • /
    • 2005
  • Antibody to hepatitis B surface antigen (HBsAb) is the important serological marker of the hepatitis B virus (HBV) infection. Conventionally, the hepatitis B surface antigen (HBsAg) obtained from the plasma of HBV carriers is used as the diagnostic antigen for detection of HBsAb. This blood-origin antigen has some disadvantages involved in high cost, over-elaborate preparation, risk of infection, et al. In an attempt to explore the suitable recombinant HBsAg for the diagnostic purpose, the HBV S gene was expressed in Pichia pastoris and the product was applied for detection of HBsAb. Hepatitis B virus S gene was inserted into the yeast vector and the expressed product was analyzed by sodium dodecyl sulphate polyacrolamide gel electrophoresis (SDS-PAGE), immunoblot, electronic microscope and enzyme linked immunosorbent assay (ELISA). The preparations of synthesized S protein were applied to detect HBsAb by sandwich ELISA. The S gene encoding the 226 amino acid of HBsAg carrying ahexa-histidine tag at C terminus was successfully expressed in Pichia pastoris. The His-Tagged S protein in this strain was expressed at a level of about 14.5% of total cell protein. Immunoblot showed the recombinant HBsAg recognized by monoclonal HBsAb and there was no cross reaction between all proteins from the host and normal sera. HBsAb detection indicated that the sensitivity reached 10 mIu (micro international unit)/ml and the specificity was 100% with HBsAb standard of National Center for Clinical Laboratories. A total of 293 random sera were assayed using recombinant S protein and a commercial HBsAb ELISA kit (produced by blood-origin HBsAg), 35 HBsAb positive sera and 258 HBsAb negative sera were examined. The same results were obtained with two different reagents and there was no significant difference in the value of S/CO between the two reagents. The recombinant HBV S protein with good immunoreactivity and specificity was successfully expressed in Pichia pastoris. The reagent for HBsAb detection prepared by Pichia pastoris-derived S protein showed high sensitivity and specificity for detection of HBsAb standard. And a good correlation was obtained between the reagent produced by recombinant S protein and commercial kit produced by blood-origin HBsAg in random samples.

Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp. KRS101

  • Hong, Won-Kyung;Heo, Sun-Yeon;Park, Hye-Mi;Kim, Chul Ho;Sohn, Jung-Hoon;Kondo, Akihiko;Seo, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.759-765
    • /
    • 2013
  • The gene encoding squalene synthase (SQS) of the lipid-producing heterotrophic microalga Aurantiochytrium sp. KRS101 was cloned and characterized. The krsSQS gene is 1,551 bp in length and has two exons and one intron. The open reading frame of the gene is 1,164 bp in length, yielding a polypeptide of 387 predicted amino acid residues with a molecular mass of 42.7 kDa. The deduced krsSQS sequence shares at least four conserved regions known to be required for SQS enzymatic activity in other species. The protein, tagged with $His_6$, was expressed into soluble form in Escherichia coli. The purified protein catalyzed the conversion of farnesyl diphosphate to squalene in the presence of NADPH and $Mg^{2+}$. This is the first report on the characterization of an SQS from a Thraustochytrid microalga.

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

High-Level Production of High-Purity Human and Murine Recombinant Prion Proteins Functionally Compatible to In Vitro Seeding Assay

  • Hwang, Hae-Gwang;Kim, Dae-Hwan;Lee, Jeongmin;Mo, Youngwon;Lee, Se-Hoon;Lee, Yongjin;Hyeon, Jae Wook;Lee, Sol Moe;Cheon, Yong-Pil;Choi, Eun-Kyoung;Kim, Su Yeon;Lee, Yeong Seon;Son, Young-Jin;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1749-1759
    • /
    • 2018
  • Recombinant (rec) prion protein (PrP) is an extremely useful resource for studying protein misfolding and subsequent protein aggregation events. Here, we report mass production of high-purity rec-polypeptide encoding the C-terminal globular domain of PrP; (90-230) for human and (89-231) for murine PrP. These proteins were expressed as His-tagged fusion proteins in E. coli cultured by a high cell-density aerobic fermentation method. RecPrPs recovered from inclusion bodies were slowly refolded under reducing conditions. Purification was performed by a sequence of metal-affinity, cation-exchange, and reverse-phase chromatography. The current procedure yielded several dozens of milligrams of recPrP per liter with >95% purity. The purified recPrPs predominantly adopted an ${\alpha}$-helix-rich conformation and were functionally sufficient as substrates to measure the seeding activity of human and animal prions. Establishment of a procedure for high-level production of high-purity recPrP supports the advancement of in vitro investigations of PrP including diagnosis for prion diseases.