• Title/Summary/Keyword: Hippocampal CA1 neuron

Search Result 18, Processing Time 0.021 seconds

Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons (해양심층수의 해마신경세포 연접형성 촉진 효과)

  • Kim, Seong-Ho;Lee, Hyun-Sook;Shon, Yun-Hee;Nam, Kyung-Soo;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1479-1484
    • /
    • 2008
  • Deep seawater (DSW) refers to water extracted from the ocean, usually at depths of 200 meters or more, which is rich in inorganic materials and has attracted attention for various applications. We investigated the effects of the DSW on the synaptic maturation of cultured rat hippocampal neurons. Immunocytochemical examination of DIV21 showed that PSD-95, $\alpha$CaMKII, and synGAP$\alpha1$clusters were strengthened and coupling rates of SV2 and NR2B were significantly increased in neurons grown in the presence of H-800 and H-1000 DSW. Our results indicate that DSW promotes the formation of excitatory postsynaptic signal transduction complexes NRC/MASC and functional synapses.

Effect of FS11052, an Inhibitor of Exocytosis, on Neurite Extension in Rat Hippocampal Neurons and PC12 Cells (신경전달물질 방출 저해제 FS11052가 신경세포와 PC12 세포의 돌기신장에 미치는 영향)

  • Lee Yun-Sik;Kim Dong-Seob
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.315-322
    • /
    • 2006
  • FS11052, a novel microbial metabolite from Streptomyces spp. was identified as a small molecular substance and shown inhibition activities for the release of neurotransmitter from rat hippocampal neuron and PC12 cells. FS11052 is an inhibitor of tritiated norepinephrine ($[^3H]-NE$) release in high $K^+$ buffer solution containing ionomycin, indicating that FS11052 inhibits neurotransmitter release after the influx of $Ca^{2+}$ ions. When examined the effect of FS11052 on glucuronidase release from guinea pig neutrophils, FS11052 inhibited glucuronidase release: when treated with $5{\mu}g/ml$ of FS11052, which was not induced cellular cytotoxicity. The fact that the glucuronidase release in neutrophil and norepinephrine release in neuron was inhibited suggests the similarity in the locations and the mechanisms of FS11052 action targets. When treated with $5{\mu}g/ml$ of FS11052, $[^3H]-NE$ release and neurite extension for both rat hippocampal neurons and PC12 cells were prevented. These observations of FS11052 functioning as an inhibitor of neurotransmitter release suggest that FS11052 has an important role in synaptic transmission in neuron.

Histological changes on pyramidal layer of hippocampus following transient cerebral ischemia in gerbils (일시적 대뇌허혈에 의한 gerbil 해마의 피라밋층에 조직학적 변화)

  • Yang, Je-hoon;Koh, Phil-ok;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.467-475
    • /
    • 2001
  • Cardiac arrest, hypoxia, shock or seizure has been known to induce cerebral ischemia. This study was designed to investigate the effect of ischemia on hippocampal pyramidal layer induced by transient bilateral occlusion of the common carotid arteries. Mature Mongolian gerbils were sacrificed at days 2, 4, and 7 after carotid occlusion for 10 minutes. Sham-operated gerbils of control group were subjected to the same protocol except for carotid occlusion. During operation for ischemia, body temperature was maintained $37{\pm}0.5^{\circ}C$ in all gerbils. Paraffin-embedded brain tissue blocks were cut into coronal slices and stained with H-E stain or immunostain by TUNEL method. Neurons with the oval and prominent nucleus and without the eosinophilic cytoplasm in the subfield of hippocamapal pyramidal layer were calculated as to be viable neurons. Their chromatins were condensed or clumped. Their nuclei appeared multiangular or irregularly shrinked. The width of the pyramidal layer was reduced due to the loss of nuclei. At day 2 after reperfusion, some neurons in the CA1 subfield were slightly eosinophilic. But most neurons in the CA2 subfield were strongly eosinophilic. At day 4 day, most neurons in the CA1 subfield were severely damaged and at day 7 day, only a few survived neurons were observed. Survived neurons per longitudinal 1mm sector in the CA1, CA2, CA3, and CA4 subfields of pyramidal layer were investigated. At day 2, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 104.5/mm (54.3%), 51.0/mm (33.8%), 105.5/mm (85.6%), and 124.3/mm (93.5%) compared to the nonischemic control group, respectively. At day 4, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfields were 3.2/mm (1.7%), 51.5/mm(34.2%), 95.3/mm (77.4%), and 112.5/mm (84.6%), respectively. At day 7, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 0.8/mm (0.4%), 5.7/mm(3.8%), 9.8/mm (8.0%), and 5.0/mm (3.7%), respectively. The mean numbers of apoptotic positive neurons in the CA1 subfield at day 2, 4, and 7 after reperfusion were 67.8/mm, 153.2/mm and 123.7/mm, respectively. These results suggest that the transient cerebral ischemia cause severe damages in most neurons at day 7 and that the prosminent apoptotic positive neurons in hippocampal pyramidal layer are the delayed neuronal death induced by ischemia.

  • PDF

Calcium-activated chloride channels: a new target to control the spiking pattern of neurons

  • Ha, Go Eun;Cheong, Eunji
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.109-110
    • /
    • 2017
  • The nature of encoded information in neural circuits is determined by neuronal firing patterns and frequencies. This paper discusses the molecular identity and cellular mechanisms of spike-frequency adaptation in the central nervous system (CNS). Spike-frequency adaptation in thalamocortical (TC) and CA1 hippocampal neurons is mediated by the $Ca^{2+}$-activated $Cl^-$ channel (CACC) anoctamin-2 (ANO2). Knockdown of ANO2 in these neurons results in increased number of spikes, in conjunction with significantly reduced spike-frequency adaptation. No study has so far demonstrated that CACCs mediate afterhyperpolarization currents, which result in the modulation of neuronal spike patterns in the CNS. Our study therefore proposes a novel role for ANO2 in spike-frequency adaptation and transmission of information in the brain.

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system (신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법)

  • Lee, Hyun-Sook;Cho, Sun-Jung;Jung, Yong-Wook;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.198-203
    • /
    • 2007
  • DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

CORRELATIONS BETWEEN HIPPOCAMPAL THETA RHYTHM AND INTRACELLULAR CHARACTERISTICS OF PYRAMIDAL NEURONS (해마 theta 리듬과 pyramidal neuron의 세포내 특성과의 상관관계)

  • Kwon, Oh-Heung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyeun-Jung;Lee, Man-Gee;Cho, Jin-Hwa;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.671-682
    • /
    • 1998
  • Electrophysiological phenomena of pyramidal cells in the CA1 area of the dorsal hippocampus were recorded from and filled with neurobiotin in anesthetized rats. The electropharmacological properties of membrane as well as the cellular-synaptic generation of rhythmic slow activity (theta) were examined. The intracellular response characteristics of these pyramidal cells were distinctly different from responses of interneurons. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most of pyramidal cells did not display a spontaneous firing. Pyramidal cells displayed weak inward rectification and anodal break excitation. The slope of the frequency-current relation was 53.4 Hz/nA for the first interspike interval and 15.9 Hz/nA for the last intervals, suggesting the presence of spike frequency adaptation. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendritc processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens. Commissural stimulation discharged pyramidal cells, followed by excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). The frequency of theta-related membrane potential oscillation was voltage-independent in pyramidal neurons. At strong depolarization levels (less than 30 mV) pyramidal cells emitted sodium spike oscillation, phase-locked to theta. The observations provide direct evidence that theta-related rhythmic hyperpolarization of principal cells is brought by the rhythmically discharging interneurons. Furthermore, the findings in which interneurons were also paced by rhythmic inhibitory postsynaptic potentials during theta suggest that they were periodically hyperpolarized by their GABAergic septal afferents.

  • PDF