• 제목/요약/키워드: Hinge safety

검색결과 70건 처리시간 0.028초

Effects of Stressed and Unstressed Reinforcements on Prestressed Concrete Members with Unbonded Tendons

  • Moon, Jeong-Ho;Shin, Kyung-Jae;Lim, Jae-Hyung;Lee, Sun-Hwa
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.131-138
    • /
    • 2000
  • The research purpose of this paper is to investigate the influential Parameters on the unbonded tendon stress. The parameters were the reinforcing ratio, the prestressing ratio, and the loading type. To this end. first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with nine specimens. Test variables were the reinforcing ratio and the prestressing ratio. Specimens were divided equally into three groups and each group had a different level of the reinforcing ratio. Each specimen within a group has a different level of the prestressing ratio. The investigation with previous and current tests revealed the followings; (1) the length of crack distribution zone does not have a close relation with the length of plastic hinge. (2) the prestressing ratio does not affect both the length of crack distribution and the length of plastic hinge, (3) the tendon stress variation is in reverse relation with the ratios of mild steels and tendons, (4) the loading type nay not affect significantly the length of crack distribution zone, (5) AASHTO LRFD Code equation and Moon/Lim's design equation predicted the test results well with some safety margins.

  • PDF

수상 태양광 발전 시스템의 부유체 형상과 구성요소가 수력학적 안전성에 미치는 영향 (Effect of the floating body shape and other composition on the hydrodynamic safety of floating photo-voltaic system)

  • 최지웅;이규한;김재운;허남욱;차용현;하호진
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.18-27
    • /
    • 2021
  • As the photo-voltaic (PV) industry grows, the floating PV has been suggested to resolve current environmental destruction and a lack of installation area. Currently, various floating PV systems have been developed, but there is a lack of studies on how the shape of the floating body and other compositions are affecting structural behavior. In this study, the behavior of the floating PV was investigated at the various length of mooring lines, stiffness of connecting hinges, and size of floating bodies. The shortest mooring lines with the distributed type floating PV showed the least force on the floating body and corresponding motion. A frictionless hinge is safer at the regular and low-height wave, while a stiff hinge is safer at irregular and high-height wave. In addition, due to the bi-axial distribution of the connecting hinge, 45° direction wave was found to be the most dangerous.

Computational and experimental analysis of beam to column joints reinforced with CFRP plates

  • Luo, Zhenyan;Sinaei, Hamid;Ibrahim, Zainah;Shariati, Mahdi;Jumaat, Zamin;Wakil, Karzan;Pham, Binh Thai;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.271-280
    • /
    • 2019
  • In this paper, numerical and experimental assessments have been conducted in order to investigate the capability of using CFRP for the seismic capacity improvement and relocation of plastic hinge in reinforced concrete connections. Two scaled down exterior reinforced concrete beam to column connections have been used. These two connections from a strengthened moment frame have been tested under uniformly distributed load before and after optimization. The results of experimental tests have been used to verify the accuracy of numerical modeling using computational ABAQUS software. Application of FRP plate on the web of the beam in connections to improve its capacity is of interest in this paper. Several parametric studies were carried out for CFRP reinforced samples, with different lengths and thicknesses in order to relocate the plastic hinge away from the face of the column.

인공위성 태양전지판 전개해석 (Solar Array Deployment Analysis of a Satellite)

  • 김경원;김선원;임재혁;이주훈;황도순;진익민;김학정;송운형;최항석
    • 한국위성정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2008
  • 발사체로부터 분리된 위성체가 궤도상에 진입하면 가장 먼저 태양전지판을 전개한다. 태양전지판의 전개유무는 위성 임무의 성공에 관련되어 있는 매우 중요한 요소 중 하나이다. 따라서, 설계 초기 단계에서부터 태양전지판 전개해석을 통하여 태양전지판의 거동을 예측하고, 전개 중 태양전지판 주요 부위에서의 하중을 계산하여, 태양전지판 전개안전성을 점검하는 것이 반드시 필요하다. 본 논문에서는 다몸체동역학 해석프로그램을 이용하여 차세대 저궤도 위성의 태양전지판 전개해석을 수행하고, 그 결과로부터 태양전지판 전개시 안정성을 분석하였다. 또한, 전개해석시 필요한 힌지 특성 데이터는 힌지 특성 시험을 수행하여 구하였으며, 이의 결과를 전개해석에 반영하여 해석을 수행하였다.

  • PDF

축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가 (Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars)

  • 박광순;서형열;김태훈;김익현;선창호
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.

차량용 도어 힌지의 경량화를 위한 재질별 수명 예측 (Analysis on Life Prediction for Different Materials in Vehicle Door Hinge Lightweight Design)

  • 유기현;김홍건
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.693-699
    • /
    • 2013
  • Environmental issues are attracting increasing interest worldwide, and accordingly, environmental regulations for vehicles are being made more stringent. As a result, the car industry is conducting studies focusing on fuel efficiency and lightweight vehicles. To manufacture lightweight vehicles, existing steel parts are replaced by composite materials and lightweight metals. In this study, the fatigue life of a new material for manufacturing lightweight car door hinges was predicted using a finite-element analysis program. The existing steel material was replaced by carbon-fiber-reinforced plastic (CFRP) and aluminum alloy 6061, and the test results were analyzed. The maximum stress decreased by approximately three times, whereas the fatigue life and safety factor increased. When only CFRP was used, its allowable stress, safety factor, and fatigue life were excellent, but the sagging of the product exceeded the allowable value, which posed a limitation in use. Therefore, it seems desirable to use an appropriate combination of steel, AA6061, and CFRP for this product.

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구 (A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame)

  • 김현진;이상현
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

대형 냉장고 도어 힌지의 최적 설계 (Optimization of Door Hinges of a Large Refrigerator)

  • 윤성준;노유정;김석로;김지원
    • 대한기계학회논문집A
    • /
    • 제38권1호
    • /
    • pp.71-78
    • /
    • 2014
  • 대형냉장고의 도어 힌지는 냉장고 도어의 개폐 동작을 원활하게 하고, 도어의 하중과 도어개폐로 인한 충격을 견디는 구조 안전성이 요구된다. 하지만, 도어 힌지는 복잡한 힌지 메커니즘과 민감한 구조 안전성으로 인해 설계 시 어려움이 많다. 본 논문에서는 스프링 응답 특성, 공간제약, 구조강도 성능을 만족하는 메커니즘을 설계하고, 메커니즘을 둘러싼 외부 프레임의 부피를 최소화하여 힌지의 생산 단가를 절감하고자 한다. 이를 위해 PIDO(progress integration and design optimization) 기술을 이용하여 모든 설계절차를 자동화함으로써 설계의 효율성을 높이는 성과를 거두었으며, 최적화 결과 목표로 하는 힌지 메커니즘 성능과 구조안정성을 개선하면서 힌지 프레임 질량의 24%를 절감하였다.