• Title/Summary/Keyword: Hill Climbing Algorithm

Search Result 42, Processing Time 0.027 seconds

A Search Algorithm for Heuristic Resource Temporal Planning (휴우리스틱 자원 시간 계획을 위한 탐색 알고리즘)

  • Shin Haeng-Chul;Kim In-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.145-147
    • /
    • 2006
  • 본 논문에서는 휴우리스틱 자원 시간 계획을 위한 새로운 탐색 알고리즘인 Strictly Enforced Hill-Climbing (SEHC)을 제안한다. 이 탐색 알고리즘은 FF 등의 계획기에 적용되어 매우 높은 효율성을 보인 Enforced Hill-Climbing (EHC)을 확장한 것이다. EHC는 목표를 찾아가는 과정 동안 매번 현재 상태에서 그 상태보다 더 낮은 휴우리스틱 값을 갖는 첫 번째 후손 상태를 찾아 넓이 우선 탐색을 펼치는 데 반해, 본 논문에서 제안하는 SEHC는 찾아진 첫 번째 후손 상태와 같은 깊이의 나머지 형제 상태들까지 탐색을 연장하여 최소의 휴우리스틱 값을 갖는 후손 상태를 찾아낸다. 이와 같은 SEHC 탐색방법은 매 주기마다 소량의 추가 탐색을 통해 탐색의 전체과정 동안 EHC 보다 우수한 탐색경로를 유지할 수 있도록 해준다. 본 논문에서는 다양한 영역의 계획문제를 대상으로 A* 알고리즘, EHC 알고리즘 등과의 비교실험을 통해 SEHC 알고리즘의 우수성을 알아본다.

  • PDF

Development of Optimization Model for Traffic Signal Timing in Grid Networks (네트워크형 가로망의 교통신호제어 최적화 모형개발)

  • 김영찬;유충식
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.87-97
    • /
    • 2000
  • Signal optimization model is divided bandwidth-maximizing model and delay-minimizing model. Bandwidth-maximizing model express model formulation as MILP(Mixed Integer Linear Programming) and delay-minimizing model like TRANSYT-7F use "hill climbing" a1gorithm to optimize signal times. This study Proposed optimization model using genetic algorithm one of evolution algorithm breaking from existing optimization model This Proposed model were tested by several scenarios and evaluated through NETSIM with TRANSYT-7F\`s outputs. The result showed capability that can obtain superior solution.

  • PDF

A Study on the Stochastic Optimization of Binary-response Experimentation (이항 반응 실험의 확률적 전역최적화 기법연구)

  • Donghoon Lee;Kun-Chul Hwang;Sangil Lee;Won Young Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • The purpose of this paper is to review global stochastic optimization algorithms(GSOA) in case binary response experimentation is used and to compare the performances of them. GSOAs utilise estimator of probability of success $\^p$ instead of population probability of success p, since p is unknown and only known by its estimator which has stochastic characteristics. Hill climbing algorithm algorithm, simple random search, random search with random restart, random optimization, simulated annealing and particle swarm algorithm as a population based algorithm are considered as global stochastic optimization algorithms. For the purpose of comparing the algorithms, two types of test functions(one is simple uni-modal the other is complex multi-modal) are proposed and Monte Carlo simulation study is done to measure the performances of the algorithms. All algorithms show similar performances for simple test function. Less greedy algorithms such as Random optimization with Random Restart and Simulated Annealing, Particle Swarm Optimization(PSO) based on population show much better performances for complex multi-modal function.

A initial cluster center selection in FCM algorithm using the Genetic Algorithms (유전 알고리즘을 이용한 FCM 알고리즘의 초기 군집 중심 선택)

  • 오종상;정순원;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.290-293
    • /
    • 1996
  • This paper proposes a scheme of initial cluster center selection in FCM algorithm using the genetic algorithms. The FCM algorithm often fails in the search for global optimum because it is local search techniques that search for the optimum by using hill-climbing procedures. To solve this problem, we search for a hypersphere encircling each clusters whose parameters are estimated by the genetic algorithms. Then instead of a randomized initialization for fuzzy partition matrix in FCM algorithm, we initialize each cluster center by the center of a searched hypersphere. Our experimental results show that the proposed initializing scheme has higher probabilities of finding the global or near global optimal solutions than the traditional FCM algorithm.

  • PDF

A Heuristic Search Planner Based on Component Services (컴포넌트 서비스 기반의 휴리스틱 탐색 계획기)

  • Kim, In-Cheol;Shin, Hang-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.159-170
    • /
    • 2008
  • Nowadays, one of the important functionalities required from robot task planners is to generate plans to compose existing component services into a new service. In this paper, we introduce the design and implementation of a heuristic search planner, JPLAN, as a kernel module for component service composition. JPLAN uses a local search algorithm and planning graph heuristics. The local search algorithm, EHC+, is an extended version of the Enforced Hill-Climbing(EHC) which have shown high efficiency applied in state-space planners including FF. It requires some amount of additional local search, but it is expected to reduce overall amount of search to arrive at a goal state and get shorter plans. We also present some effective heuristic extraction methods which are necessarily needed for search on a large state-space. The heuristic extraction methods utilize planning graphs that have been first used for plan generation in Graphplan. We introduce some planning graph heuristics and then analyze their effects on plan generation through experiments.

An Experimental Comparison of Adaptive Genetic Algorithms (적응형 유전알고리즘의 실험적 비교)

  • Yun, Young-Su
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.1-18
    • /
    • 2007
  • In this paper, we develop an adaptive genetic algorithm (aGA). The aGA has an adaptive scheme which can automatically determine the use of local search technique and adaptively regulate the rates of crossover and mutation operations during its search process. For the adaptive scheme, the ratio of degree of dispersion resulting from the various fitness values of the populations at continuous two generations is considered. For the local search technique, an improved iterative hill climbing method is used and incorporated into genetic algorithm (GA) loop. In order to demonstrate the efficiency of the aGA, i) a canonical GA without any adaptive scheme and ii) several conventional aGAs with various adaptive schemes are also presented. These algorithms, including the aGA, are tested and analyzed each other using various test problems. Numerical results by various measures of performance show that the proposed aGA outperforms the conventional algorithms.

Application of genetic Algorithm to the Back Analysis of the Underground Excavation System (지하굴착의 역해석에 대한 유전알고리즘의 적용)

  • 장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.65-84
    • /
    • 2002
  • The Observational Method proposed by Terzaghi can be applied for the safe and economic construction projects where the exact prediction of the behavior of the structures is difficult as in the underground excavation. The method consists of measuring lateral displacement, ground settlement and axial force of supports in the earlier stage of the construction and back analysis technique to find the best fit design parameters such as earth pressure coefficient, subgrade reaction etc, which will minimize the gap between calculated displacement and measured displacement. With the results, more reliable prediction of the later stage can be obtained. In this study, back analysis programs using the Direct Method, based on the Hill Climbing Method were made and evaluated, and to overcome the limits of the method, Genetic Algorithm(GA) was applied and tested for the actual construction cases.

  • PDF

Hybrid genetic-paired-permutation algorithm for improved VLSI placement

  • Ignatyev, Vladimir V.;Kovalev, Andrey V.;Spiridonov, Oleg B.;Kureychik, Viktor M.;Ignatyeva, Alexandra S.;Safronenkova, Irina B.
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.260-271
    • /
    • 2021
  • This paper addresses Very large-scale integration (VLSI) placement optimization, which is important because of the rapid development of VLSI design technologies. The goal of this study is to develop a hybrid algorithm for VLSI placement. The proposed algorithm includes a sequential combination of a genetic algorithm and an evolutionary algorithm. It is commonly known that local search algorithms, such as random forest, hill climbing, and variable neighborhoods, can be effectively applied to NP-hard problem-solving. They provide improved solutions, which are obtained after a global search. The scientific novelty of this research is based on the development of systems, principles, and methods for creating a hybrid (combined) placement algorithm. The principal difference in the proposed algorithm is that it obtains a set of alternative solutions in parallel and then selects the best one. Nonstandard genetic operators, based on problem knowledge, are used in the proposed algorithm. An investigational study shows an objective-function improvement of 13%. The time complexity of the hybrid placement algorithm is O(N2).

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu, Tomonobu;Shirasawa, Tomiyuki;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.155-161
    • /
    • 2002
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed an algorithm that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar isolation and avoids oscillations after reaching the maximum power point.