• 제목/요약/키워드: Highly-radioactive nuclear materials

검색결과 19건 처리시간 0.025초

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발 (Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant)

  • 이정석;김왕배;곽동열
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.

CRITICALITY SAFETY OF GEOLOGIC DISPOSAL FOR HIGH-LEVEL RADIOACTIVE WASTES

  • Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.489-504
    • /
    • 2006
  • A review has been made for the previous studies on safety of a geologic repository for high-level radioactive wastes (HLW) related to autocatalytic criticality phenomena with positive reactivity feedback. Neutronic studies on geometric and materials configuration consisting of rock, water and thermally fissile materials and the radionuclide migration and accumulation studies were performed previously for the Yucca Mountain Repository and a hypothetical water-saturated repository for vitrified HLW. In either case, it was concluded that it would be highly unlikely for an autocatalytic criticality event to happen at a geologic repository. Remaining scenarios can be avoided by careful selection of a repository site, engineered-barrier design and conditioning of solidified HLW. Thus, criticality safety should be properly addressed in regulations and site selection criteria. The models developed for radiological safety assessment to obtain conservatively overestimated exposure dose rates to the public may not be used directly for the criticality safety assessment, where accumulated fissile materials mass needs to be conservatively overestimated. The models for criticality safety also require more careful treatment of geometry and heterogeneity in transport paths because a minimum critical mass is sensitive to geometry of fissile materials accumulation.

Vitrification of Highly Active Liquid Waste(I) (Thermal Decomposition of Nitrates and Additives for Glass-making)

  • Chun, Kwan-Sik;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.211-222
    • /
    • 1977
  • 고준위 방사성 폐액의 고화처리 방법들 중 하나인 Vitrification Process의 연구로서 핵연료 재처리 과정에서 유출되는 가상적인 비활성폐액 중에 함유되어 있는 분열 및 부식 생성물들의 질산화물과 유리화시키기 위해 사용되는 첨가제의 열분해에 관하여 연구 조사되었다. 결정수를 갖고 있는 화합물들의 열분해시점은 75$^{\circ}C$이하였지만, 무수화합물들은 비교적 높은 분포를 보였다. 110$0^{\circ}C$까지 가열하여 얻어진 질량손실율을 이론치와 비교하였을 때, 대부분의 화합물은 릴치하거나 근사하였지만, Sodium, Cesium, Lithium, Ruthenium 등의 질산화물의 질량손실율은 이론치 보다 훨씬 높았다. 여기서 얻어진 결과는 고준위 폐액의 가소처리과정 또는 조사된 화합물들의 혼합에 따른 열분해를 분석하는데도 이용될 수 있을 것이다.

  • PDF

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

핫셀에서 사용후핵연료봉 장전 Capsule의 이송 및 저장장치 개발 (Development of transportation and storage device for spent nuclear fuel capsules)

  • 홍동희;정재후;김영환;박병석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.369-370
    • /
    • 2006
  • During demonstrations of a process conditioning spent nuclear fuels, it is necessary to transport and handle Spent fuel road cuts from Post Irradiation Examination facility to Slitting device in The hot cell. the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length for the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF(Advanced spent nuclear fuel Conditioning Process Facility). In the ACPF, Once the capsule is unloaded in the ACPF, Capsule is taken out one-by-one and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed transportation and storage device for spent nuclear fuel capsules.

  • PDF

Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

  • Kim, Hyun-Gil;Yang, Jae-Ho;Kim, Weon-Ju;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.1-15
    • /
    • 2016
  • For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell $UO_2$ and high-density composite pellet concepts are being developed as ATF pellets. A microcell $UO_2$ pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts-surface-modified Zr-based alloy and SiC composite material-are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder;Sharma, Jeewan;Singh, Tejbir
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1364-1371
    • /
    • 2018
  • An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.

Analysis of University Student Awareness of Radiation Exposures from Consumer Products

  • Kim, SeungHwan;Cho, Kunwoo
    • Journal of Radiation Protection and Research
    • /
    • 제41권1호
    • /
    • pp.57-70
    • /
    • 2016
  • Background: Since the terminology 'radioactive consumer product' is not quite familiar to the public and is often considered as negative and detrimental things, the educational curriculum is essential for establishing reliability of nuclear energy related and for the development of better communication strategy of radiation risk with the public. To provide base data which is valuable for establishing efficient curriculum of education and training about radiation safety, it is necessary to apprehend the different level of awareness of radiation exposures classified by various consumer products. Materials and Methods: On November 2014, a question investigation about asking awareness level of radiation exposure from various consumer products was done for university students who are highly educated. The object students are studied at a four-year-course universities which is located at Daejeon City. Results and Discussion: Although the average awareness level is comparatively low, the awareness of senior students, who major in radiation, nuclear related departments and male students are relatively high. On the other hand, the awareness of freshman, sophomore, junior students, who do not major in radiation, nuclear related departments and female students are relatively low. It is necessary to provide various information to avoid unnecessary concerns and misconceptions about radiation exposure. Conclusion: This paper will be an instrument for efficient establishment of curriculum of education and training related with radiation safety.

사용후핵연료봉 이송 Capsule의 개발 (Development of Transportation Capsule for Spent Nuclear Fuel Rod Cuts)

  • 홍동희;진재현;정재후;김영환;윤지섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1055-1058
    • /
    • 2005
  • In the ACPF(Advanced spent nuclear fuel Conditioning Process Facility), the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, at the other facility called PIEF(Post Irradiation Examination Facility) a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length fur the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF. Once the capsule is unloaded in the ACPF, the rod-cut is taken out one-by-one from the capsule and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed capsule which prevents the pellets scattering and remarkably reduces the leading and unloading time of the rod-cuts.

  • PDF