• 제목/요약/키워드: Highest evaporation rate

Search Result 35, Processing Time 0.031 seconds

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Influence of Deposition Temperature on the Film Growth Behavior and Mechanical Properties of Chromium Aluminum Nitride Coatings Prepared by Cathodic Arc Evaporation Technique

  • Heo, Sungbo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.139-143
    • /
    • 2021
  • Cr-Al-N coatings were deposited onto WC-Co substrates using a cathodic arc evaporation (CAE) system. CAE technique is recognized to be a very useful process for hard coatings because it has many advantages such as high packing density and good adhesion to metallic substrates. In this study, the influence of deposition temperature as a key process parameter on film growth behavior and mechanical properties of Cr-Al-N coatings were systematically investigated and correlated with microstructural changes. From various analyses, the Cr-Al-N coatings prepared at deposition temperature of 450℃ in the CAE process showed excellent mechanical properties with higher deposition rate. The Cr-Al-N coatings with deposition temperature around 450℃ exhibited the highest hardness of about 35 GPa and elastic modulus of 442 GPa. The resistance to elastic strain to failure (H/E ratio) and the index of plastic deformation (H3/E2 ratio) were also good values of 0.079 and 0.221 GPa, respectively, at the deposition temperature of 450℃. Based on the XRD, SEM and TEM analyses, the Cr-Al-N coatings exhibited a dense columnar structure with f.c.c. (Cr,Al)N multi-oriented phases in which crystallites showed irregular shapes (50~100nm in size) with many edge dislocations and lattice mismatches.

Effect of Temperature Conditions on Electrochemical Properties for Zinc-Air Batteries (온도조건에 따른 아연-공기 전지의 전기화학적 특성)

  • Lee, Ju Kwang;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.687-692
    • /
    • 2020
  • A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 ℃ condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 ℃. Among the cells stored at various temperature conditions, the cell stored at 50 ℃ delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 ℃ shows only 2.28 % self-discharge rate.

Atmospheric Characteristics of Fog Incidents at the Nakdong River : Case Study in Gangjeong-Goryeong Weir (낙동강 유역 안개 발생시 기상 특성: 강정고령보 사례를 중심으로)

  • Park, Jun Sang;Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Jang, Jun Yeong;Kang, Misun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.657-670
    • /
    • 2015
  • Visibility and Automatic Weather System(AWS) data near Nakdong river were analyzed to characterize fog formation during 2012-2013. The temperature was lower than its nearby city - Daegu, whereas the humidity was higher than the city. 157 fog events were observed in total during the 2 year period. About 65% of the events occurred in fall (September, October, and November) followed by winter, summer, and spring. 94 early morning fog events of longer than 30 minutes occurred when south westerly wind speed was lower than 2 m/s. During these events, the water temperature was highest followed by soil surface and air temperatures due to the advection of cold and humid air from nearby hill. The observed fog events were categorized using a fog-type classification algorithm, which used surface cooling, wind speed threshold, rate of change of air temperature and dew point temperature. As a result, frontal fog observed 6 times, radiation 4, advection 13, and evaporation 66. The evaporation fog in the study area lasted longer than other reports. It is due to the interactions of cold air drainage flow and warm surface in addition to the evaporation from the water surface. In particular, more than 60% of the evaporation fog events were accompanied with cold air flows over the wet and warm surface. Therefore, it is needed for the identification of the inland fog mechanism to evaluate the impacts of nearby topography and land cover as well as water body.

Preparation and Characterization of Quercetin-Loaded Solid Dispersion by Solvent Evaporation and Freeze-Drying Method

  • Park, Sang Hyun;Song, Im-Sook;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.7 no.3
    • /
    • pp.79-83
    • /
    • 2016
  • We prepared solid dispersion formulations of quercetin to enhance its solubility and dissolution rate. Various quercetin-loaded solid dispersion were tested with quercetin, poloxamer 407, and carrier such as hydroxypropyl methyl cellulose (HPMC), polyethylene glycol 8000 (PEG 8000), and polyvinylpyrrolidone K40 (PVP K40) using solvent evaporation and freeze drying methods in terms of both the aqueous solubility and the dissolution rates of quercetin. The solubility of quercetin as its solid dispersion formulations was markedly improved compared with that of quercetin powder. Especially, highest solubility of quercetin was observed when HPMC was used as a carrier. The cumulative dissolution of quercetin within 360 min from solid dispersion composed of quercetin, poloxamer 407, and HPMC was 8.8-fold higher than the dissolution of pure quercetin. The results of powder X-ray diffraction (XRD) and scanning electron microscope (SEM) indicated that quercetin transformed from a crystalline to an amorphous form through the solid dispersion formulation process. These results suggest that the solid dispersion formulation of quercetin with poloxamer 407 and HPMC could be a promising option for enhancing the solubility and dissolution rate of quercetin.

Research on an Optimal Trickling Surface of the Regenerator in a Solar Air-conditioning System (태양열 이용 냉난방 공조시스템중 재생기의 최적 재생면 구조에 관한 연구)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.185-195
    • /
    • 1998
  • The high viscosity of a LiCl(lithium chloride) solution as an absorbent in a solar energy regenerator causes a channeling phenomenon on the solar powered absorber plate surface when the solution is trickling down for regenerating itself. As this channeling phenomenon affects badly the heat and mass transfer, it is pertinent that this phenomenon be studied. Since regenerating performance of the solar energy regenerator depends on how the solution uniformly flows on the plate surface, an experiment on the structure of the plate surface for a model regenerator was conducted. Various shapes and structures of the plat surface down which the LiCl solution trickled were tested, and it was found that a tiered surface showed the highest water evaporation rate leaving more potential energy concentrating LiCl on the plate. It was also observed that the water evaporation rate depended largely on the pitch and height of the disturbing rods. In addition, the wider the contact area is and the longer the solution's flow time, the better the solar energy regenerator's performance.

  • PDF

Analysis of Drying Efficiency for Circulating and Falling Movements on Indirected Drying Process of Food Waste (음식물류폐기물 간접건조과정에서의 순환 및 낙하이동에 따른 건조효율 평가)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2012
  • Indirected heating dryer is used as one of the food waste treatment technologies for the production of the drier material supplied to the recycling facilities or end user. This study investigated the effect on drying efficiency for the operation of rotating screw with the circulating and falling movements on indirected drying process of food waste. The screw operating condition showed higher drying efficiency despite of the shorter drying time compared to the screw non-operating condition. The moisture content decreased to 14.4% from the initial moisture content of 77.1% after drying 5 hours in the screw operating condition. On the other hand, in the screw non-operating condition, the moisture content decreased slightly to 35.6% after drying 16 hours. During the drying process, variations of the water evaporation rate and particle size showed different tendencies depending on the moisture content regions. In the higher moisture content region above the glue zone(moisture content of about 50%-60%), the particle size increased and the water evaporation rate reached the highest peak. In the range of glue zone, the particle size maximized while the water evaporation rate decreased sharply. In the lower moisture content region below the glue zone, the water evaporation rate and particle size both decreased at the same time. The particle size distribution was widely ranged from 25.0mm to 0.25mm in the screw operating condition while it was narrowly distributed in the screw non-operating condition from 25.0mm to 3.56mm, especially highly concentrated to 25.0mm. It was regarded that the hygroscopic, capillary and gravitational water evaporated more easily from the intra-particle during the circulating and falling movement caused by the rotating of the screw and the difference of the cohesional force of water within intra-particle depending on the moisture content regions. Comparing the effect of the circulating and falling movement on drying efficiency, the water evaporation rates per time and per weight of dry solid in the screw operating condition were higher about 364% and 356%, respectively, than those of the screw non-operating condition.

Drying by Microwave Irradiation of Sewage Waste (도시 하수 폐기물의 고주파 건조)

  • Park, Soo In;Park, Kwang Ha
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.418-426
    • /
    • 1997
  • Dewatered digested sewage sludge were heated with microwave and their drying characteristics were investigated on the effect of their surface area, shape, diameter and thickness. The drying characteristics of identical samples in a conventional drying oven were studied. In conventional drying, constant rate period was not found and moisture was evaporated with capillary action. Moisture in the sludge was a bound water and free water was not exist. In microwave drying, the falling rate period was divided into two zones. In falling rate drying period, moisture movement occured by diffusion. The evaporation surface area was a significant variable, the greater heating surface area promoted water removal rate over wide region of water content. Drying rate was slow and constant rate drying period was found in wide moisture content region with increasing diameter. Drying characteristics appeared differently in various shape. In microwave heating, first of all temperature of sludge center was increased and was the highest. Temperature in the constant rate drying period was remained constantly at $80{\sim}100^{\circ}C$.

  • PDF

Characteristics of Tetanus Toxoid Loaded in Biodegradable Microparticles (파상풍 톡소이드를 함유한 생체분해성 미립구의 특성)

  • 김지윤;김수남;백선영;이명숙;민홍기;홍성화
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.293-299
    • /
    • 2000
  • Biodegradable microspheres made from poly-lactide-co-glycolide polymers have been considered as a new delivery system for single-dose vaccine. Purified tetanus toxoid (TT) was encapsulated in poly-lactide(PLA) and poly-lactide-co-glycolide (PLGA) microparticles using a solvent evaporation method in a multiple emulsion system (water-in oil-in water). The morphology of 77-loaded microparticles was spherical and the suface of them was smooth. The particle size was in a range of 2-10. Protein loading efficiency was 68-97.8%. PLGA (85:15) microparticle showed the highest efficiency. Protein release pattern was influenced by polymer molecular weight and composition. The release rate of PLA(Mw 100,000) microsphere was higher than any other microspheres. In consequence of the hydrolysis of PLGA(50:50) microspheres, environmental pH decreased from 7.4 to 5.0. The PLA, PLGA (75:25) and PLGA (85:15) microshperes showed no significant pH change. The antigenicity or n in microshperes was assayed by indirect sandwich ELISA using equine polyclonal tetanus antitoxin for capture antibody and human polyclonal tetanus antitoxin for primary antibody. The antigenicity of TT in PLA (Mw 100,000), PLGA(50:50, Mw 100,000) and PLGA (75:25, Mw 73,300) after 30 days incubation showed 54, 40.9 and 76.7%, respectively.

  • PDF

A study on the Development of a Drying and Fermentation Process of Domestic Animal Manure;I. Change in Water Content of Pig Manure under Different Drying Condition (가축분(家畜糞) 건조(乾燥) , 발효(醱酵) 복합시설(複合施設) 개발(開發) 연구(硏究);I. 건조방법별(乾燥方法別) 함수율(含水率) 변화(變化))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Woo, Ki-Dae;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.216-222
    • /
    • 1994
  • This study was conducted to obtain practical information on the efficient drying of animal manure under the sunny dry condition. The effects of the height of manure pile (5, 10, 15, and 20cm), stirring times (0, 1, 2, and 4 times/day), the addition of dried manure (30%, w/w), and the type of drying bed on the removal of water from fresh pig manure were investigated in a plastic house. Pig manure was dried very well by lowering the height of manure pile and the drying efficiency was the highest at 10cm height. Water evaporation rate was the greatest at the twice stirring per day treatment. The addition of dried manure as bulking material enhanced the water evaporation rate of wet pig manure. The amounts of water removed for 19 days under the condition of 10cm height of manure pile and twice-stirring in spring, summer, autumn and winter were 75.6, 73.3, 54.6 and $32.6kg/1.2m^2$, respectively.

  • PDF