• 제목/요약/키워드: Higher binding energy (HBE)

검색결과 1건 처리시간 0.019초

고체 산화물 연료전지 공기극 물질인 $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 및 0.7)의 표면분석 (Surface analysis of $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 and 0.7) as a cathode material for Solid Oxide Fuel Cell)

  • 김정현;이창보;백승욱;박광진;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.196-199
    • /
    • 2007
  • The chemical states of oxygen on the surfaces of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxide systems were investigated by X-ray photoelectron spectroscopy. Merged oxygen peaks of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxides could be divided as five sub-peaks. These five sub-peaks could be defined as lattice oxygen ($O_{L}$). chemisorbed oxygen peaks ($O_{C}$) and hydroxyl condition oxygen peak ($O_{H}$). In case of the $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the binding energy (BE) of oxygen lattice were located at same BE. However, the BE of chemisorbed oxygen peaks including oxygen vacancy shows different BE. Especially, it was found that BE of chemisorbed oxygen peaks was increased when more Sr were substituted. Comparing atomic percentages of oxygens of $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the ratio of $Pr_{0.3}Sr_{0.7}CoO_{3}$ was higher than that of $Pr_{0.5}Sr_{0.5}CoO_{3}$. It showed more chemically adsorbed site including oxygen vacancies were existed in $Pr_{0.3}Sr_{0.7}CoO_{3}$.

  • PDF