• Title/Summary/Keyword: High-yield process

Search Result 785, Processing Time 0.034 seconds

Initial Blank Optimization Design of Square Can Multistage Drawing considering Formability and Product Shape (사각형 캔 드로잉 다단 공정에서 성형성과 제품형상을 동시에 고려한 초기 블랭크 형상 최적 설계)

  • Park, Sang-Min;Kim, Dong Kyu;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • Multistage deep-drawing technology is used widely in the production of mobile phone battery cases to improve productivity and economy. To ensure adequate capacity and rigidity, such cases are fabricated as a rectangular cup with a high slender ratio. The multistage deep-drawing of a rectangular cup entails a high slender ratio, and the heights of the product sides may be non-uniform because of the complicated deformation mechanisms. This causes problems in product assembly that affects the surface quality of the case. This study examined a blank shape that minimizes the height variations of the product to resolve the aforementioned problems. Optimization design and analysis were performed to identify the shape that yields the least variation. The long and short sides of an oval blank were set as the design variables. The objective function was set to yield the lowest height difference, and the thickness reduction rate of the product was set to the target range. In addition, the height of the final shape was set as a constraint. The height difference was minimized successfully using the optimized design. The design process of the initial blank for all rectangular shapes can be automated in the future.

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment (열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발)

  • Lee, Jihyun;Shin, Seulgi;Choi, Kanghoon;Jo, Jaemin;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.443-447
    • /
    • 2016
  • The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

Investigation of alumina(Al2O3) 3D nozzle printing process (알루미나(Al2O3)를 활용한 3D 노즐 프린팅 기술 연구)

  • An, Tae-Kyu;Han, Kyu-Sung;Kim, Ji-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.247-253
    • /
    • 2019
  • 3D printing technology has attracted considerable attention because of its potential to fabricate the intricate design of ceramic products. In this study, ceramic 3D nozzle printing was introduced to manufacture complex alumina products with a ceramic pigment. The alumina paste was formulated by incorporating an elastomer to impart viscoelastic properties. Viscoelastic pastes play an essential role in ceramic 3D nozzle printing. The effects of the viscoelastic properties of the ceramic pastes on their printability were assessed using comprehensive rheological analysis, and various shapes were printed. As a result, the paste with a high yield stress showed better printability. In addition, a ceramic pigment was added to the developed pastes to increase the aesthetics of the printed ceramic structure. The printed ceramic parts were sintered in air at 1300 ℃. The stability of the ceramic pigment was confirmed even after high-temperature sintering.

The effect of heat input and PWHT on the mechanical properties and microstructure of HSB600 steel weldments with GMAW (HSB600강 가스메탈아크용접부에서 입열량과 용접후 열처리가 기계적 특성과 미세조직에 미치는 영향)

  • Ju, Dong-Hwi;Jang, Bok-Su;Lim, Young-Min;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1939-1946
    • /
    • 2012
  • High performance steel for bridges requires higher performance in tensile and yield strength, toughness, weldability, etc. The purpose of this study is to investigate the weldability of HSB 600 steel. The effects of heat input (1.4~3.2kJ/mm) and postweld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and hardness of as-welded specimens decreased with increasing heat input. Charpy V-notch impact energy did not show any significant difference by postweld heat treatment. The fine-grained acicular ferrite was mainly formed in the 2.1kJ/mm of heat input while polygonal and side plate ferrites were dominated in the high inputs. Meanwhile, tensile strength and hardness of PWHT weldments decreased due to the coarsening and globularization of ferrite microstructure and reduction of residual stresses with increasing heat inputs. However, there was no significant difference in the impact energy absorption.

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Binderless Consolidation of Fine Poly-Si Powders for the Application as Photovoltaic Feedstock (태양전지(太陽電池) 원재료(原材料)로 사용(使用)하기 위한 폴리실리콘 미세분말(微細粉末)의 무점결제(無粘結劑) 성형(成形))

  • Shin, Je-Sik;Kim, Dae-Suk;Kim, Ki-Young;Shon, In-Jin;Moon, Byung-Moon
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, binderless consolidation processes of ultra foe Si powder, by-products of making high purity poly-Si in the current method, were systematically investigated for use as economical solar-grade feedstock. The average diameter of the silicon powder was $7.8{\mu}m$. The main contaminants of the fine silicon powder were $SiO_2$ type oxide and humidity. The chemical pretreatment using the HF solution was observed to be effective for the improvement of the compactability of the silicon powder and the density ratio and the strength of the silicon powder compacts. The yield of the binder-free consolidation process increased by 20% under a vacuum condition. In as-received state, the silicon powder were not pure enough to be used as solar grade feed-stock material. After the dry chemical treatments, a sufficiently high purity above solar-grade was able to be achieved.

Identification of Synthesized Pitch Derived from Pyrolyzed Fuel Oil (PFO) by Pressure (석유계 잔사유(PFO)의 피치 합성 시 압력조건에 따른 피치 특성 변화)

  • Seo, Sang Wan;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.652-656
    • /
    • 2018
  • In this study, effects of the reaction pressure were studied for petroleum-based pitch synthesis. A two-stage reaction process was performed based on different reaction pressure conditions. Each stage experiments for the two-stage reaction were consecutively carried out. The first stage was consisted of three different pressure conditions; high (10 bar), normal and low (0.1 bar). And the second stage was carried out at the normal and low (0.1 bar) pressure. The pitch synthesis was realized at $400^{\circ}C$ for 2 h. Thermal properties and molecular weight distributions of each samples were investigated by analyzing the softening point and MALDI-TOF data. Volatilized components during the pith synthesis were measured by GC-SIMDIS. In case of the first-step reaction with the high pressure condition, the low molecular weight component participated to the pitch formation more effectively and the pitch with the low softening point was obtained. However, for the case of the first-step with the low pressure, the low molecular weight component was vent outside and the partial coke formation occurred. Eventually, pitch properties such as the softening point and yield were controlled effectively by changing the pressure in the pitch synthesis reaction.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Effects of carbon source and nitrogen concentration on the P-EPS and Chl-a production at the MMBR system (MMBR에서 탄소원 종류 및 질소 농도가 S. quadricauda의 P-EPS 및 Chl-a 생성에 미치는 영향)

  • Choi, Yun-Jeong;Sim, Tae-Suk;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.405-415
    • /
    • 2021
  • MMBR system has been suggested as a promising system to resolve harvesting problems induced from low settling efficiency of microalgae. And recently, a lot of research on reducing fouling at the MMBR system has investigated focused on EPS in many cases. EPS of microalgae mainly consists of polysaccharides and protein components, and is produced through photosynthesis and nitrogen-carbon metabolic pathways. Especially, P-EPS is one of major compounds which occur membrane fouling phenomenon, as its hydrophobic protein components cause floc formation and cake layer accumulation. And it is already known that almost every microalgae can metabolize P-EPS or Chl-a when nitrogen sources as a substrate is insufficient or exhausted situation. With the above backgrounds, uptake rates of P-EPS or Chl-a by Scenedesmus quadricauda according to the type of carbon source and nitrogen concentration were evaluated in order to verify correlation between carbon source vs P-EPS production, and indeed Scenedesmus quadricauda uses P-EPS or Chl-a when the amounts of nitrogen sourc es in the feed is not satisfied. As a result, it was shown that P-EPS and Chl-a production were increased proportional to nitrogen concentration under organic carbon condition. And especially, the amo unts of P-EPS and Chl-a in the cell were diminished with the nitrogen source becomes insufficient or exhausted. Because P-EPS accelerates fouling at the MMBR system, P-EPS degradation by Scenedesmus quadricauda in order to get nitrogen source may contribute to reducing fouling. About a affects of N-consumed Chl-a to the MMBR fouling, more survey is needed. On the contrary, considering the purpose of MMBR system of this study, i.e. harvesting useful high value microalgae efficiently feeding adequate industrial process wastewater, it seems like difficult to maintain satisfied metabolic activity and to harvest with high yield rate using nitrogen-poor MMBR feed.

Characteristics of the Dependent Variables due to the Conditions of the Independent Variables of Coating Process During the Producing of Snack Using Rice Collet Added with Dried Shrimp (마른새우첨가 쌀 collet을 이용한 스낵 제조 시 코팅공정 독립변수의 조건변화에 따른 종속변수의 특징)

  • JE, Hae-Soo;YOON, Moon-Joo;LEE, Jae-Dong;KANG, Kyung-Hun;JUNG, Hee-Bum;PARK, Si-Young;PARK, Jin-Hyo;KIM, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1822-1831
    • /
    • 2015
  • This study was carried out to optimize coating process of the rice snack added with dried shrimp powder by using single extruder. A total of 8 independent variables were used for 4 independent variables of edible oil coating and 4 independent variables of seasoning coating. 4 independent variables for edible oil coating were set up as 10, 15, 20, 25 and 30% for the content of edible oil; 40, 50, 60, 70 and $80^{\circ}C$ for the tumbler temperature; 60, 70, 80, 90 and 100 rpm for the tumbler speed; 2, 3, 4, 5 and 6 min for the coating time. 4 independent variables for seasoning coating were set up as 2, 3, 4, 5 and 6% for the content of seasoning; 40, 50, 60, 70 and $80^{\circ}C$ for the tumbler temperature; 50, 60, 70, 80 and 90 rpm for the tumbler speed; 2, 3, 4, 5 and 6 min for the coating time. The characteristics of the dependent variables as coating yield and Breaking ratio of collet due to the condition changes of the independent variable was studied during process of edible oil coating and seasoning coating, respectively. As a results of this study, 20% of edible oil content, $70^{\circ}C$ of tumbler temperature, 80 rpm of tumbler speed, 4 min of coating time for process of edible oil coating, 3% of seasoning content, $60^{\circ}C$ of tumbler temperature, 70 rpm of tumbler speed, 3 min of coating time for process of seasoning coating were found to be the most preferable over other independent variables for the production of snack. In conclusion, it is necessary to set the independent variable in order to produce the high quality snack added with the rice as the main raw material and dried shrimp, edible oil and seasoning as the sub-materials.