• Title/Summary/Keyword: High-voltage pulse power

Search Result 623, Processing Time 0.027 seconds

A New DC Ripple-Voltage Suppression Scheme in Three Phase Buck Diode Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 BUCK 다이오드 정류기에서의 새로운 DC 리플-전압 저감 기법)

  • Lee, Dong-Yun;Choy, Ick;Song, Joong-Ho;Choi, Ju-Yeop;Kim, Kwang-Bae;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.154-162
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output ${\gamma}$oltage in three-phase buck d diode rectifiers is presented in this paper. The proposed pulse frequency modulation method is employed to r regulate the output voltage of the buck diode rectifiers and guarantee zero-current switching of the switch over the Vvide load range. The pulse frequency control method used in tIns paper shows generally good p performance such as low THD of the input line current and unity power factor. In addition, the pulse f freιluency method can be effectively used to suppress the low frequency voltage ripple appeared in the dc output voltage. The proposed technique illustrates its validity and effectiveness through the respective s simulations and experiments.

  • PDF

Design of High Repetition Nd:YAG Laser Transmitter Module for Rangefinder (거리측정용 고반복 Nd:YAG 레이저 발진부 설계)

  • Park, Y.C.;Choi, Y.S.;Kim, H.K.;Kwon, W.G.;Kang, E.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.460-463
    • /
    • 1993
  • In this paper, The laser transmitter module is designed as the subsystem of the high repetitive laser rangefinder. The module consists of high voltage power supply, high voltage control circuits, high voltage discharger, electro-optic Q-switch driver, and laser resonator. The high voltage power supply is composed of 2-phase flyback converter. And it has 220W power level and 78% conversion efficiency. From the Q-switch driver of the crossed porro resonator, the phase retardation voltage is switched from 600V to -1500V with 200ns falling time. The module can be operated up to 15Hz. And it generates the laser pulse which has 20ns width and 80mJ.

  • PDF

Experimental Waveforms of Single-Pulse Soft-Switching PFC Converter

  • Taniguchi, Katsunori;Koh, Kang-Hoon;Lee, Hyun-woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.1002-1007
    • /
    • 2003
  • A new driving circuit for the SPSS (Single-Pulse Soft-Switching) PFC converter is proposed. The switching device of a SPSS converter switches once In every half cycle of an AC commercial power source. Therefore, it can be solved many problems caused by the high frequency operation. The proposed SPSS converter achieves the soft-switching operation and the EMI noise can be reduced. The resonant capacitor voltage supplies to the resonant inductor even if the input AC voltage is the vicinity of zero cross voltage. Then, the power factor and input current waveform can be improved without delay time. A new driving circuit achieves the operation of SPSS converter by one switching drive circuit. The proposed converter can be satisfied the IEC standard sufficiently.

  • PDF

Voltage Source Resonant Inverter for Excimer Gas Discharge Load

  • Koudriavtsev Oleg;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.89-92
    • /
    • 2001
  • Silent gas discharge method has been widely applied for ozone production, ultraviolet light and UV laser generation. Since ozone and ultraviolet applications have tendency to spread widely in industry, the development of efficient and low-cost power supply for such systems is a task of great impotency. This paper introduces high-frequency inverter type mode power supply designed for ozone generation tube and ultraviolet generation excimer lamp and considerations on this inverter and pulse density modulation control strategy applied in it.

  • PDF

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

Low-cost crowbar system and protection scheme in capacitor bank module (커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로)

  • Rim, Geun-Hie;Cho, Chu-Hyun;Lee, Hong-Sik;Pavlov, E.P.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

18-step Back-to-Back Voltage Source Converter with Pulse Interleaving Circuit for HVDC Application

  • Lee, Hye-Yeon;Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.435-442
    • /
    • 2010
  • This paper proposes an 18-step back-to-back (BTB) voltage source converter using four sets of 3-Level converter modules with auxiliary circuits to increase the number of steps. The proposed BTB voltage source converter has the independent control capability of active power and reactive power at the interconnected ac system. The operational feasibility of the proposed BTB converter was verified through many simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental results with a scaled hardware prototype. The proposed BTB converter could be widely applied for interconnecting the renewable energy source to the power grid.