• Title/Summary/Keyword: High-voltage pulse power

Search Result 623, Processing Time 0.03 seconds

Series Capacitor Compensated Resonant High Frequency Inverter with ZCS-Pulse Density Modulation fey Induction Heating Fixing Roller in Copy Machine

  • Ahmed T.;Shirai H.;Gamage L.;Soshin K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.499-502
    • /
    • 2003
  • This paper presents the voltage source type half bridge lossless auxiliary inductor snubber assisted series capacitor compensated resonant high frequency inverter for induction heated fixing roller in copy machines. This high-frequency inverter treated here can completely achieve zero current soft switching (ZCS) commutation for wide power regulation range under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady-state operating principle is originally presented fur a constant frequency PDM control strategy under a ZCS operation commutation, together with its output effective power regulation characteristics-based on the PDM strategy. The experimental operating performances of this ZCS-PDM high frequency inverter using IGBTs are illustrated as compared with computer simulation ones. Its power losses and actual efficiency are evaluated and discussed on the basis of simulation and experimental results.

  • PDF

Novel Voltage Source Converter for 10 kV Class Motor Drives

  • Narimani, Mehdi;Wu, Bin;Zargari, Navid Reza
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1725-1734
    • /
    • 2016
  • This paper presents a novel seven-level (7L) voltage source converter for high-power medium-voltage applications. The proposed topology is an H-bridge connection of two nested neutral-point clamped (NNPC) converters and is referred to as an HNNPC converter. This converter exhibits advantageous features, such as operating over a wide range of output voltages, particularly for 10-15 kV applications, without the need to connect power semiconductors in series; high-quality output voltage; and fewer components relative to other classic seven-level topologies. A novel sinusoidal pulse width modulation technique is also developed for the proposed 7L-HNNPC converter to control flying capacitor voltages. One of the main features of the control strategy is the independent application of control to each arm of the converter to significantly reduce the complexity of the controller. The performance of the proposed converter is studied under different operating conditions via MATLAB/Simulink simulation, and its feasibility is evaluated experimentally on a scaled-down prototype converter.

Design of SCR-Based ESD Protection Circuit for 3.3 V I/O and 20 V Power Clamp

  • Jung, Jin Woo;Koo, Yong Seo
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • In this paper, MOS-triggered silicon-controlled rectifier (SCR)-based electrostatic discharge (ESD) protection circuits for mobile application in 3.3 V I/O and SCR-based ESD protection circuits with floating N+/P+ diffusion regions for inverter and light-emitting diode driver applications in 20 V power clamps were designed. The breakdown voltage is induced by a grounded-gate NMOS (ggNMOS) in the MOS-triggered SCR-based ESD protection circuit for 3.3 V I/O. This lowers the breakdown voltage of the SCR by providing a trigger current to the P-well of the SCR. However, the operation resistance is increased compared to SCR, because additional diffusion regions increase the overall resistance of the protection circuit. To overcome this problem, the number of ggNMOS fingers was increased. The ESD protection circuit for the power clamp application at 20 V had a breakdown voltage of 23 V; the product of a high holding voltage by the N+/P+ floating diffusion region. The trigger voltage was improved by the partial insertion of a P-body to narrow the gap between the trigger and holding voltages. The ESD protection circuits for low- and high-voltage applications were designed using $0.18{\mu}m$ Bipolar-CMOS-DMOS technology, with $100{\mu}m$ width. Electrical characteristics and robustness are analyzed by a transmission line pulse measurement and an ESD pulse generator (ESS-6008).

Analysis of Power Supply System for 8.5 MVA Magnetic Power Supply Using EI (EMTDC를 이용한 8.5 MVA급 Magnetic Power Supply의 전력공급 시스템 분석)

  • Jeong, Yong-Hoo;Nho, Eui-Cheol;Kim, In-Dong;Choi, Jung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1114-1116
    • /
    • 2002
  • The characteristics of voltage drop and THD for parallel operating 11 PCRs (Phase Controlled Rectifiers) are analysed. The PCRs are used to drive high current (1.6 kA ${\sim}$ 3.7 kADC) electromagnetic coils for electromagnets. All the PCRs operate simultaneously in pulsed mode, and the pulse shot occurs every 150 seconds. During the pulse operation the PCR output current ramps up for 4 seconds, and then keeps flat top state for 2 seconds, and finally ramps down for 4 seconds. For the flat top mode a severe voltage drop and distortion appear in the power system because transformers for the PCRs are designed considering pulsed mode operation. It is expected that the analysis method can be applied to improve the system performance including power factor and design of high power pulsed mode operating power supply systems.

  • PDF

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF

Utility AC Frequency to High Frequency ACPower Conversion Circuit with Soft Switching PWM Strategy

  • Sugimura Hisayuki;Ahmed Nabil A.;Ahmed Tarek;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.181-188
    • /
    • 2005
  • In this paper, a DC smoothing filterless soft switching pulse modulated high frequency AC power conversion circuit connected to utility. frequency AC power source is proposed for consumer induction heating hot water producer, steamer and super heated steamer. The operating principle of DC link filterless utility frequency AC-high frequency AC (HF AC) power conversion circuit defined as high frequency cycloinverter is described, which can operate under a principle of ZVS/AVT and power regulation based on alternate asymmetrical PWM in synchronization with the utility frequency single phase AC positive or negative half wave voltage. The dual mode modulation control scheme based on high frequency PWM and commercial frequency AC voltage PDM for the proposed high frequency cycloinverter are discussed to enlarge its soft switching commutation operating range for wide HF AC power regulation. This high frequency cycloinverter is developed for high frequency IH Dual Packs Heater (DPH) type boiler used in consumer and industrial fluid pipeline systems. Based on the experiment and simulation results, this high frequency cycloinverter is proved to be suitable for the consumer use IH-DPH boiler and hot water producers. The cycloinverter power regulation and power conversion efficiency characteristics are evaluated and discussed.

Characteristic improvement of the forward type high voltage pulse power supply for Lamp Type Ozonizer (램프형 오존발생기용 Foward형 고압 펄스전원장치의 특성개선)

  • Kim, Kyung-Sik;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Nam, Seung-Sik;Sim, Kwang-Yeal
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1117-1119
    • /
    • 2001
  • This paper describes the forward type pulse power supply using a Power-MOSFET in the view of commercialization. The principle of basic operating and the operating characteristics of the forward type pulse power supply are estimated by the switching frequency, coupling factor and duty ratio. It is shown that theoretical and experimental results are in good agreement by comparing simulation and experimental results when a lamp type ozonizer can be used as a load. Also, experimental results indicate that the discharge and ozone concentration characteristics of the manufactured pulse power supply is more improved compare to the conventional pulse power supply[5]. This proposed supply show that it can be practically used as a pulse power supply in various environment improvement facilities.

  • PDF

An IGBT Driver for Serial Connected Pulse Switching IGBTS (직렬 연결한 IGBT용 Driver)

  • Jin Jeong-Tae;Cha Byung-Heon;Seong Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.164-165
    • /
    • 2001
  • An IGBT driver for serially connected pulse switching IGBTS was contructed and tested. The IGBT driver has ten output pulses with 1 ${\mu}ysec$ pulse width Its pulse repetition-rate can adjusted from 0 to 20 kHz. The output pulses was insulated from 10 kV high voltage by a pulse transformer. Their voltage amplitude are 18 V, voltage rising time 250 nsec., and voltage falling time 200 nsec when IGBT gates with 12 nF input capacitance are connected.

  • PDF

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

Particular aspects of drivers for VCSELs operating at multi-Gb/s

  • Kyriakis-Bitzaros, Efstathios D.;Katsafouros, Stavros G.;Halkias, George
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.82-86
    • /
    • 2002
  • It is demonstrated that the conventional current-pulse laser drivers are not adequate in driving VCSELs operating at multi-Gb/s speeds. Simulation results, including the bonding parasitics, show that high-performance VCSELs are more efficiently driven using voltage-pulse mode of operation. The optical output power is almost doubled in the voltage-mode of operation, while the total electrical power consumption of the transmitter decreases by 20%.