• Title/Summary/Keyword: High-throughput nucleotide

Search Result 75, Processing Time 0.024 seconds

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Breed Discrimination Using DNA Markers Derived from AFLP in Japanese Beef Cattle

  • Sasazaki, S.;Imada, T.;Mutoh, H.;Yoshizawa, K.;Mannen, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1106-1110
    • /
    • 2006
  • In the meat industry, correct breed information in food labeling is required to assure meat quality. Genetic markers provide corroborating evidence to identify breed. This paper describes the development of DNA markers to discriminate between Japanese Black and F1 (Japanese Black${\times}$Holstein) breeds. The amplified fragment length polymorphism method was employed to detect candidate markers absent in Japanese Black but present in Holstein. The 1,754 primer combinations yielded eleven markers that were converted into single nucleotide polymorphism markers for high-throughput genotyping. The allele frequencies in both breeds were investigated for discrimination ability using PCR-RFLP. The probability of identifying F1 was 0.9168 and probability of misjudgment was 0.0066 using four selected markers. The markers could be useful for discriminating between Japanese Black and F1 and would contribute to the prevention of falsified breed labeling of meat.

A diagnosis of hypochondroplasia by next generation sequencing

  • Ahn, Seok Min;Kim, Young Han;Baek, Jun Woo;Bae, Eun Ju;Lee, Hong Jin
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • Achondroplasia and hypochondroplasia are the two most common forms of short-limb dwarfism. They are autosomal dominant diseases that are characterized by a rhizomelic shortening of the limbs, large head with frontal bossing, hypoplasia of the mid-face, genu varum and trident hands. Mutations in the fibroblast growth factor receptor-3 (FGFR3) gene, which is located on chromosome 4p16.3, have been reported to cause achondroplasia and hypochondroplasia. More than 98% of achondroplasia cases are caused by the G380R mutation (c.1138G>A or c.1138G>C). In contrast, the N540K mutation (c.1620C>A) is detected in 60-65% of hypochondroplasia cases. Tests for common mutations are often unable to detect the mutation in patients with a clinical diagnosis of hypochondroplasia. In this study, we presented a case of familial hypochondroplasia with a rare mutation in FGFR3 identified by next generation sequencing.

A family with X-linked Cornelia de Lange syndrome due to a novel SMC1A missense mutation identified by multi-gene panel sequencing

  • Hong, Sungwon;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.24-27
    • /
    • 2018
  • Cornelia de Lange syndrome (CdLS) is a rare, clinically and genetically heterogeneous, multi-system developmental disorder caused by mutations in genes that encode components of the cohesin complex. X-linked CdLS caused by an SMC1A mutation is an extremely rare disease characterized by phenotypes milder than those of classic CdLS. In the Republic of Korea, based on a literature review, one family with SMC1A-related CdLS with mild phenotypes has been genetically confirmed to date. In this study, we describe the clinical features of a Korean boy with a hemizygous novel missense mutation and his mother with a heterozygous mutation, i.e., c.2447G>A (p.Arg816His) in SMC1A, identified by multi-gene panel sequencing. The proband had a mild phenotype with typical facial features and his mother exhibited a mild, subclinical phenotype. This study expands the clinical spectrum of patients with X-linked CdLS caused by SMC1A variants. Moreover, these findings reinforce the notion that a dominant negative effect in a carrier female with a heterozygous mutation in SMC1A results in a phenotype milder than that in a male patient with the same mutation.

Application of Cancer Genomics to Solve Unmet Clinical Needs

  • Lee, Se-Hoon;Sim, Sung Hoon;Kim, Ji-Yeon;Cha, SooJin;Song, Ahnah
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.174-179
    • /
    • 2013
  • The large amount of data on cancer genome research has contributed to our understanding of cancer biology. Indeed, the genomics approach has a strong advantage for analyzing multi-factorial and complicated problems, such as cancer. It is time to think about the actual usage of cancer genomics in the clinical field. The clinical cancer field has lots of unmet needs in the management of cancer patients, which has been defined in the pre-genomic era. Unmet clinical needs are not well known to bioinformaticians and even non-clinician cancer scientists. A personalized approach in the clinical field will bring potential additional challenges to cancer genomics, because most data to now have been population-based rather than individualbased. We can maximize the use of cancer genomics in the clinical field if cancer scientists, bioinformaticians, and clinicians think and work together in solving unmet clinical needs. In this review, we present one imaginary case of a cancer patient, with which we can think about unmet clinical needs to solve with cancer genomics in the diagnosis, prediction of prognosis, monitoring the status of cancer, and personalized treatment decision.

Developing a Protein-chip for Depigmenting Agents Screening (미백제 스크리닝용 단백질칩의 개발)

  • Kim, Eun-Ki;Kwak, Eun-Young;Han, Jung-Sun;Lee, Hyang-Bok;Shin, Jung-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.13-16
    • /
    • 2005
  • For the high-throughput-screening system (HTS) of depigmenting agents using a protein chip, effects of oligonucleotide-inhibitor sequence on the binding of Mitf protein to E box of MC1R was investigated. The sequence of oligonucletide-inhibitor affected the binding of the target DNA to Mitf, depending on the location of the sequence variation in the inhibitor nucleotide. The oligonucletide-inhibitor that changed the CATGTG sequence didn't show enough inhibition of the target DNA to Mitf, whereas significant inhibition was observed when the sequence outside the CATGTG was changed. This result indicated that CATCTG is crucial sequence for the binding of Mitf to I-box which initiates the transcription of pigmenting genes.

Review of Genetic Diagnostic Approaches for Glanzmann Thrombasthenia in Korea

  • Shim, Ye Jee
    • Journal of Interdisciplinary Genomics
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 2021
  • Inherited platelet function disorders (IPFDs) are a disease group of heterogeneous bleeding disorders associated with congenital defects of platelet functions. Normal platelets essential role for primary hemostasis by adhesion, activation, secretion of granules, aggregation, and procoagulant activity of platelets. The accurate diagnosis of IPFDs is challenging due to unavailability of important testing methods, including light transmission aggregometry and flow cytometry, in several medical centers in Korea. Among several IPFDs, Glanzmann thrombasthenia (GT) is a most representative IPFD and is relatively frequently found compare to the other types of rarer IPFDs. GT is an autosomal recessive disorder caused by mutations of ITGA2B or ITGB3. There are quantitative or qualitative defects of the GPIIb/IIIa complex in platelet, which is the binding receptor for fibrinogen, von Willbrand factor, and fibronectin in GT patients. Therefore, patients with GT have normal platelet count and normal platelet morphology, but they have severely decreased platelet aggregation. Thus, GT patients have a very severe hemorrhagic phenotypes that begins at a very early age and persists throughout life. In this article, the general contents about platelet functions and respective IPFDs, the overall contents of GT, and the current status of genetic diagnosis of GT in Korea will be reviewed.

Novel compound heterozygous mutations of ATM in ataxia-telangiectasia: A case report and calculated prevalence in the Republic of Korea

  • Jang, Min Jeong;Lee, Cha Gon;Kim, Hyun Jung
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.110-114
    • /
    • 2018
  • Ataxia-telangiectasia (AT; OMIM 208900) is a rare autosomal recessive inherited progressive neurodegenerative disorder, with onset in early childhood. AT is caused by homozygous or compound heterozygous mutations in ATM (OMIM 607585) on chromosome 11q22. The average prevalence of the disease is estimated at 1 of 100,000 children worldwide. The prevalence of AT in the Republic of Korea is suggested to be extremely low, with only a few cases genetically confirmed thus far. Herein, we report a 5-year-old Korean boy with clinical features such as progressive gait and truncal ataxia, both ankle spasticity, dysarthria, and mild intellectual disability. The patient was identified as a compound heterozygote with two novel genetic variants: a paternally derived c.5288_5289insGA p.(Tyr1763*) nonsense variant and a maternally derived c.8363A>C p.(His2788Pro) missense variant, as revealed by next-generation sequencing and confirmed by Sanger sequencing. Based on claims data from the Health Insurance Review and Assessment Service Republic of Korea, we calculated the prevalence of AT in the Republic of Korea to be about 0.9 per million individuals, which is similar to the worldwide average. Therefore, we suggest that multi-gene panel sequencing including ATM should be considered early diagnosis.

A novel variant of PHEX in a Korean family with X-linked hypophosphatemic rickets

  • Kim, Sejin;Kim, Sungsoo;Kim, Namhee
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • X-linked dominant hypophosphatemic rickets are the most common form of familial hypophosphatemic rickets resulting from hypophosphatemia caused by renal phosphate wasting, which in turn is a result of loss-of-function mutations in PHEX. Herein, we report a 39-year-old female with short stature and skeletal deformities and 12-month-old asymptomatic daughter. The female has a history of multiple surgical treatments because of lower limb deformities. Her biochemical findings revealed low serum phosphorus levels with elevated serum alkaline phosphatase activity and normal serum calcium levels, suggesting presence of hypophosphatemic rickets. To identify the molecular causes, we used a multigene testing panel and found a mutation, c.667dup (p.Asp223GlyfsTer15), in PHEX gene. To the best of our knowledge, this is a novel mutation. A heterozygous form of the same variant was detected in daughter, who showed no typical symptoms such as bow legs, frontal bossing, or waddling gate, but presented early signs of impaired mineralization in both X-ray and biochemical findings. The daughter was initiated onto early medical treatment with oral phosphate supplementation and an active vitamin D analog. Because the daughter was genetically diagnosed based on a family history before the onset of symptoms, appropriate medical management was possible from early infancy.

Complete Genome Sequence and Analysis of Carnation Italian Ringspot Virus from Erigeron annuus (L.) Pers. in Korea

  • Chung Youl Park;Da Hyun Lee;Young Ho Jung;JunHyeok Kim;Mi Hyun Lee;Un Seop Shin;Hee Ho Lee;Cho Hee Park;Chae Sun Na
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.47-47
    • /
    • 2020
  • In this study, we aimed to study carnation italian ringspot virus (CIRV) in Erigeron annuus (L.) Pers. in Bonghwa County, Korea. The collected samples showed mosaic and malformation symptoms. To identify the virus species, we performed high-throughput sequencing, reverse transcription polymerase chain reaction, and cloning. The virus was confirmed to be an unreported species, and therefore we performed genome sequencing of the samples. The complete genome was 4,746 nucleotides in length. The CIRV contained five open reading frames (ORFs), and it showed the typical features of members of the genus Tombusvirus. Phylogenetic analyses revealed that ClRV isolates had the highest nucleotide identities with the CZ isolate (95.89%) from Korea. In recent years, these viruses have sporadically been reported in floral scent and medicinal plants. This research found the first natural host infected with CIRV, and provides baseline information to determine the correlation between weeds and crops.

  • PDF