• 제목/요약/키워드: High-temperature design evaluation

검색결과 232건 처리시간 0.022초

층간분리 방지를 위한 인발공정 패스설계 (Pass Design of Drawing Process to Prevent Delamination)

  • 이상곤;고대철;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.46-49
    • /
    • 2008
  • Drawing process of the high carbon steel wire with high speed is usually performed at room temperature using multi pass. Tn the multi pass drawing, temperature rise affects the mechanical properties of the final product. The excessive temperature rise during the deformation promotes the occurrence of delamination, and deteriorates the torsion property and durability of wire. This paper investigates the occurrence of delamination in the wire through the torsion test and the evaluation of wire temperature. The excessive wire temperature ieads to the occurrence of delamination. Based on the calculation of the wire temperature, a new pass schedule, that can prevent the delamination due to the excessive wire temperature rise, is designed through the isothermal pass schedule.

  • PDF

Thermal Model of High-Speed Spindle Units

  • Zver, Igor-Alexeevich;Eun, In-Ung;Chung, Won-Jee;Lee, Choon-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.668-678
    • /
    • 2003
  • For the purpose to facilitate development of high-speed spindle units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found out that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.

단조 금형 SCM435 고장력 볼트의 파손 해석 (Failure Analysis on SCM435 High Strength Bolt of Forging Die)

  • 윤서현;김민헌;남기우
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.649-655
    • /
    • 2019
  • Fracture behaviors of SCM435 high strength bolt have been studied including macroscopic and microscopic fracture observation, Energy Dispersive X-ray Spectroscopy, Vickers hardness test and applied stress evaluation. cracks (ratchet marks) were generated by the repetitive loads acting on the bolts, initial stress of bolt and the stress concentration. The applied stress was found to be slightly higher than the fatigue limit of the material. The initial stress of bolt must be removed, and the mold temperature during the process must be maintained by room temperature. Bolts are recommended to be peened to improve fatigue limit.

실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론 (Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation)

  • 김성우;김동진
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.132-141
    • /
    • 2013
  • This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.

공기 사이클 냉동기에 적응되는 반경 터빈의 개발 (Development of Radial Turbine for Air Cycle Refriger)

  • 권기훈;이기호;김종선
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.281-286
    • /
    • 2001
  • The radial turbine has been successfully applied to the systems which request relatively small output compared with the axial turbine, and has low manufacturing cost due to it's small size and simple structure. Recently, the researches on the development and the efficiency maximization of the radial turbine are in progress corresponding with the trend toward miniaturization in turbo machinery and the development of small dispersed power generation systems. The radial turbine is to be applied to our turbo refrigerator of which engine speed is 26,000 rpm and turbine efficiency is $88\%$. Also, as a heat exchanger is accepted instead of a combustor in our turbo refrigerator, the design of radial turbine has been performed to be appropriate to the circumstance of low temperature air, not high temperature combustor gas, into the turbine inlet . This radial turbine is being developed in consideration with not only the aero-dynamic performance but also the simplification of manufacturing and integration, and the durability at operating condition. This paper refer to the performance evaluation about the radial turbine design by comparison with consulting from Russia and the our evaluation about various design factors which are considered in aero-dynamic design process.

  • PDF

공기식 태양열 흡수기의 설계 및 성능평가 (Design and Performance Evaluation of Solar Air Receivers)

  • 조현석;이현진;김종규;이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.207-212
    • /
    • 2012
  • It is important to produce the high-temperature and high-pressure air for the concentrated solar power system using the combined cycle. In this paper, we designed two types of tubular receivers to heat up the compressed air and provided their preliminary experimental results for performance evaluation and further improvements. The developed receivers are in a square cavity shape surrounded by flow conduits for easy scale-up and radiation loss reduction. The two receivers were tested with 5 bar air in the KIER solar furnace and evaluated in terms of the outlet temperature and the efficiency.

Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가 (Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material)

  • 김종민;김우곤;김민철
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

변형해석 및 공리적 설계에 의한 와이어 방전가공기의 설계평가 (Design Evaluation of WEDM Based on Deformation Analyses and Axiomatic Design)

  • 이형일;우상우;김주원;김충연
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.851-863
    • /
    • 2002
  • Recent industrial requirements for highly precise shape processing have brought the electric discharge machining (EDM) in great need. High precision in EDM is primarily achieved by high performance controllers. However there exists inherent precision loss due to structural micro-deformation. On this background, we study structural deformation characteristics of wire cut EDM via finite element (FE) analysis and axiomatic design. Two different wire cut EDMs are selected as analysis models. 3D CAD package I-Deas is first used to construct FE models of wire cut EDMs, and then ABAQUS FE code is used for following structural analysis. Pertinency of FE mesh refinement is discussed in terms of η -factor. It is shown that performance accuracy of EDM depends strongly on the structural characteristics. Some design enhancements are suggested in an axiomatic design point of view. Finally we provide weight and temperature induced displacement discrepancies between wire end points as position functions of each subframe.

소형 원심압축기의 성능평가에 대한 실험적 연구 (An Experimental Study on the Performance Evaluation of a Small-Sized Centrifugal Compressor)

  • 조성국;강신형
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1052-1063
    • /
    • 1998
  • The performance database of small-sized centrifugal compressors is needed for the design of high performance machines and also for the verification of design tools and analysis software. An impeller is designed, manufactured and tested. The effects of several parameters on the evaluation of performance are investigated and the performance test of parallel diffuser is also carried out. The proper estimation of static pressure, total temperature and blockage at the impeller exit is important for performance evaluation. 4 method in cooperation with 3-D calculation is suggested. The measured performances are in a good agreement with the predicted results. However, there are some discrepancies in efficiency.