• 제목/요약/키워드: High-temperature degradation

검색결과 866건 처리시간 0.031초

Field aged 태양전지모듈의 노화현상에 따른 전기적 특성 관찰 (Observation of Electrical Properties in Field-aged Photovoltaic Module)

  • 강기환;유권종;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16% drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20% mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to $30^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around $15^{\circ}C$ at the encapsulant discoloration spot of PV array.

  • PDF

산화막 성장이 지르코늄 합금의 기계적 물성 열화에 미치는 영향 (Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys)

  • 전상환;김용수
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.579-586
    • /
    • 2004
  • A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.

The Properties of Degradation in Epoxy Composites according to Electrical Stress

  • Park, Young-Chull;Park, Geon-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.47-51
    • /
    • 2001
  • The electrical degradation phenomena of epoxy composites to be used as a molding material for transformers were studied. The electrets were first manufactured by applying high voltages to five kinds of specimens given a mixing rate, and then TSC(Thermally Stimulated Current) values at the temperature range of $-160\sim200[^{\circ}C]$ were measured from a series of experiments. The behaviour of carrier and its origin in epoxy composites were examined, respectively, And various effects of electrical degradation on epoxy composites were also discussed in this study.

  • PDF

복합재료의 열화도 및 경화도에 따른 초음파 특성 연구 (The Evaluation of the thermal degradation and the degree of cure of glass/epoxy composite by ultrasonic technique)

  • 강길호;최원종;박상윤
    • Composites Research
    • /
    • 제16권6호
    • /
    • pp.33-40
    • /
    • 2003
  • 복합재료의 열화에 의한 미세한 손상을 실제적으로 관찰하기는 쉽지 않다. 복합재료의 열화는 심각한 blistering이 일어나기 전에 chain scission, oxidation 등의 분자적인 상변화 과정을 거쳐 모재 또는 모재와 강화제 사이의 계면에서 미세한 delamination이 발생하고 성장한다. 복합재료의 열화에 의한 초기 열손상은 기계적인 특성에 큰 영향을 주게 된다. 본 연구에서는 복합재료 부품이 열이나 화염에 단기간 노출되었을 경우 및 경화도에 따른 초음파 투과 특성을 분석하였다. 온도와 시간에 따라 열화 시험을 실시하고 초음파 탐상을 통하여 absorption coefficient를 측정한 결과 열화에 의한 미소 균열과 분자 적인 상변화에 의하여 열화도가 높을수록 높은 absorption coefficient값을 보였다 경화온도를 달리하여 경화된 복합재료의 초음파 탐상 결과 경화 온도가 높을수록 absorption coefficient 값은 높아졌으며 material velocity는 낮아지는 경향을 보였다. 이는 높은 온도에서 경화될수록 수분 및 휘발 성분에 의한 void와 같은 결함이 많이 발생하고 분자 구조적인 측면에서 높은 온도에서 경화된 경우 초음파 흡수율이 높은 망상구조가 형성되기 때문이다.

電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보 (Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application))

  • 정희돈;권녕각
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.598-607
    • /
    • 1992
  • 본 연구에서는 고온중 장시간 사용중에 일어나는 야금학적 성질의 변화의 추 원인인 특정 탄화물을 비파괴적으로 검출하기 위해, 최근에 연구 되고 있는 전기화학 적 방법을 응용하기 위한 기초연구이다. 한편으로는 비파괴적 방법의 실험실적 연구 를 현장에 응용시키기 위한 시도를 행하고, 본 연구 결과를 이용한 향후 설비 진단 시 스템의 개요를 고찰해 보인다.

Characteristics of Sucrose Thermal Degradation with High Temperature and High Pressure Treatment

  • Woo, Koan-Sik;Hwang, In-Guk;Lee, Youn-Ri;Lee, Jun-Soo;Jeong, Heon-Sang
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.717-723
    • /
    • 2009
  • Thermal degradation characteristics of sucrose was investigated. A 20% sucrose solution was heated to temperatures of $110-150^{\circ}C$ for 1-5 hr. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugars, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) of the heated sucrose solutions were evaluated. With increasing temperatures and times, the L-, a-, and b-values decreased; however, total color difference (${\Delta}E_{ab}$) increased. The pH and sucrose contents decreased, and fructose and glucose contents increased with increasing heating temperature and time. Organic acids, such as formic acid, lactic acid, and levulinic acid, and HMF contents increased with increasing heating temperatures and times. EDA (%) and the AEAC of the heated sucrose solutions increased with increasing heating temperature and time. The heated sucrose solution was more effective than unheated sucrose solution, having higher EDA (90 fold), and AEAC (13 fold).

이종금속 용접부의 경도변화에 대한 장시간 인공열화의 영향 (Effects of Long-term Artificial-Aging on the Hardness Variation of Dissimilar Metal Weldments)

  • 김정석
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This study investigates the effects of long-term artificial-aging on hardness variation in the dissimilar metal weldments for nuclear power plant facilities. These dissimilar welds are inevitably required to join the components in nozzle parts of pressurized vessels, such as austenitic stainless steels and ferritic steels. A artificial thermal aging was conducted in an electrical furnace to simulate material degradation at high temperatures. The test materials were held at the temperature of $600^{\circ}C$ for 10000 hours and interrupted at various levels of degraded specimens. The degradation of hardness is a well-known phenomenon resulting from long-term aging or high-temperature degradation of structural materials. In this study, the variation of hardness at each position was different, and complicated in relation to microstructures such as twins, grains, precipitates, phase transformations, and residual stresses in dissimilar weldments. We discussed the variation of hardness in terms of microstructural changes during long-term aging.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • 신병길;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가

  • 김환;이권용;김대준;이명현;서원선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.91-94
    • /
    • 2003
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear. Alumina and zirconia (3Y-TZP) are using in clinical application worldwide and there are many good test reports. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite having low temperature degradation-free character and high fracture tough . was developed and it leads the lower wear 3f polyethylene than alumina and zirconia. In the present study, in order to optimise the microstructure of low temperature degradation (LTD)-free zirconia/alumina composite for the best wear resistance of polyethylene, various compositions of (LTD)-free zirconia/alumina composites were fabricated, and the sliding wear of UHMWPE against these novel composites were examined and compared with that against alumina and zirconia ceramics used for total hip joint heads.

  • PDF