• 제목/요약/키워드: High-temperature corrosion

검색결과 716건 처리시간 0.026초

음향방출기법을 이용한 A106 탄소강의 부식평가 (Evaluation on Corrosion of A106 Carbon Steel using AE Technique)

  • 이진경;이상필
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.100-105
    • /
    • 2008
  • A106 Carbon Steel has recently been used as the material for pipes, nozzles, and tank shells in nuclear power plants. Its corrosion resistance gives the steel many advantages for use in structures under high temperature and high pressure. This steel is also expected to be used as a structural material in the shipbuilding industry for applications involving severe conditions, such as high temperature and pressure. In this study, the mechanical properties of A106 carbon steel were evaluated in regard to its corrosion times. The tensile and yielding strengths decreased as the corrosion time increased. In particular, the tensile strength was influenced by corrosion. In addition, an acoustic emission (AE) technique was used to clarify the microscopic damage to specimens that had undergone corrosion for a certain period. It was found that AE parameters, such as events, energy, duration time, and amplitude were useful for evaluating the degree of damage and remaining life of the corroded specimen. Various properties of the waveform and frequency range were also seen, based on the degree of damage to the specimen from the corrosion time.

UNS N08810 합금의 입계부식손상과 원인 분석 (Elucidation of Intergranular Corrosion of UNS N08810 alloys)

  • 김영식;황보덕
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.196-204
    • /
    • 2012
  • Corrosion failure of petrochemical facilities is one of the difficulties in maintenance, since operating conditions of crude oil production, storage, and refinement are very aggressive. UNS N08810, which has been used for crude oil transportation pipes and storage tanks in petrochemical industries, shows good resistance to general corrosion and localized corrosion in several environments. Among its environments, UNS N08810 showed better corrosion resistance in fuel gas containing sulfuric acid and phosphoric acid and sulfur. However, ductility and toughness at high temperature over about $500^{\circ}C$ were greatly reduced due to microstructural change. In general, welding process is the representative method to join the parts in industrial components. Because the alloy by welding can be sensitized and corroded, the manufacturing process should be controlled. In this work, UNS N08810 was used and heat treatment conditions including solution and stabilization treatments were controlled. Oxalic acid etch test by ASTM A262 Practice A was done to evaluate the qualitative sensitization in room temperature. Huey test by ASTM A262 Practice C was done to evaluate the intergranular corrosion rate in boiling 65% $HNO_3$ solution. Also, the microstructure by thermal history was analyzed. Experimental alloy showed high intergranular corrosion rate and its corrosion mechanism was elucidated.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Pure inorganic protective silica coating on stainless steel prepared at low heat treatment temperature

  • 황태진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2010
  • Stainless steel is widely known to have superior corrosion properties. However, in some harsh conditions it still suffers various kinds of corrosions such as galvanic corrosion, pitting corrosion, intergranular corrosion, chloride stress corrosion cracking, and etc. For the corrosion protection of stainless steel, the ceramic coatings such as protective silica film can be used. The sol-gel coating technique for the silica film has been extensively studied especially because of the cost effectiveness. It has been proved that silica can improve the oxidation and the acidic corrosion resistance of metal surface in a wide range of temperatures due to its high heat and chemical resistance. However, in the sol-gel coating process there used to engage a heat treatment at an elevated temperature like $500^{\circ}C{\sim}600^{\circ}C$ where cracks in the silica film would be formed because of the thermal expansion mismatch with the metal. The cracks and pores of the film would deteriorate the corrosion resistance. When the heat treatment temperature is reduced while keeping the adhesion and the density of the film, it could possibly give the enhanced corrosion resistance. In this respect, inorganic protective silica film was tried on the surface of stainless steel using a sol-gel chemical route where silica nanoparticles, tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used. Silica nanoparticles with different sizes were mixed and then the film was deposited on the stainless steel substrate. It was intended by mixing the small and the large particles at the same time a sufficient consolidation of the film is possible because of the high surface activity of the small nanoparticles and a modest silica film is obtained with a low temperature heat treatment at as low as $200^{\circ}C$. The prepared film showed enhanced adhesion when compared with a silica film without nanoparticle addition. The films also showed improved protect ability against corrosion.

  • PDF

Polyester Film Laminating Technology for Chip Condenser

  • Lee, Yun Dai;Son, Yang Soo;Ahn, Joong Geol
    • Corrosion Science and Technology
    • /
    • 제3권4호
    • /
    • pp.172-177
    • /
    • 2004
  • Biaxially oriented polyethylene terephthalate copolymer(BO - PET)film laminated aluminiums have been applied for chip condenser case. The BO PET film is characterized by high molecular which gives high corrosion resistance, good adhesion and high heat resistance. The higher orientation lowers formability of the film. So, optimum orientation has to be controlled during the laminating process. And to confirm the adhesion between BO PET and aluminium and to guarantee the formability of PET laminated aluminums, we have controlled the chromium oxides weight on the aluminium and laminating condition ( laminating temperature, soaking temperature and lag time after nip roll and quenching conditions) This paper discusses the effect of the laminating conditions on the formability of laminated aluminums. As results, it is clear that the orientation of the BO PET film decreased with an increase in the strip temperature. When the film temperature is over the melting point of the film, its orientation drastically decreased.

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.

Use of Capparis decidua Extract as a Green Inhibitor for Pure Aluminum Corrosion in Acidic Media

  • Al-Bataineh, Nezar;Al-Qudah, Mahmoud A.;Abu-Orabi, Sultan;Bataineh, Tareq;Hamaideh, Rasha S.;Al-Momani, Idrees F.;Hijazi, Ahmed K.
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.9-20
    • /
    • 2022
  • The aim of this paper is to study corrosion inhibition of Aluminum with Capparis decidua extract. The study was performed in a 1.0 M solution of hydrochloric acid (HCl) and was monitored both by measuring mass loss and by using electrochemical and polarization methods. A scanning electron microscopy (SEM) technique was also applied for surface morphology analysis. The results revealed high inhibition efficiency of Capparis decidua extract. Our data also determined that efficiency is governed by temperature and concentration of extract. Optimum (88.2%) inhibitor efficiency was found with maximum extract concentration at 45 o C. The results also showed a slight diminution of aluminum dissolution when the temperature is low. Based on the Langmuir adsorption model, Capparis decidua adsorption on the aluminum surface shows a high regression coefficient value. From the results, the activation enthalpy (∆H#) and activation entropy (∆S#) were estimated and discussed. In conclusion, the study clearly shows that Capparis decidua extract acted against aluminum corrosion in acidic media by forming a protective film on top of the aluminum surface.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

바이오매스 발전시 염소가스에 의한 고온부식 (High-temperature Corrosion by Chlorides in Biomass-fired Plants)

  • 이동복
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.14-19
    • /
    • 2016
  • Biomass is a renewable and sustainable source of energy used to create electricity or pressurized steam. In biomass-fueled power plants, wood waste or other waste is burned to produce steam that runs a turbine to make electricity, or that provides heat to industries and homes. Biomass power plants, apart from producing energy, help to reduce the $CO_2$ emission. However, the main problem is the high-temperature corrosion due to fuel corrosivity, especially of the straw. This limits both the temperature of the steam and also the effectiveness of the power plant. The corrosion in biomass-fueled plant was described.