• Title/Summary/Keyword: High-strength wire

Search Result 179, Processing Time 0.025 seconds

The Characteristics of Wire Electrical Discharge Machining and Final Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 후처리 연삭가공 특성)

  • 왕덕현;김원일;김종업
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.10-16
    • /
    • 2002
  • Titanium alloys have the characteristics of lightness, high strength and good corrosion resistant and are broadly used in manufacturing parts for military and aerospace industries. These alloys are also recognized for organism materials comparatively and used as fixing ones in human body. Nevertheless titanium alloys have excellent properties, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by conventional tools, so it is required nontraditional machining process. Finally, the mechanical characteristics such as surface roughness, shape and hardness on studied for wire electrical discharge machined and pound surfaces of titanium alloys for different heat-tested conditions.

Effects of Diffusible Hydrogen Content and Hardness on Cold Cracking in High Strength Weld Metal (고강도강 용접금속 저온균열 발생에 미치는 확산성수소량 및 경도의 영향)

  • Seo, Won-Chan;Bang, Kook-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • The effects of the diffusible hydrogen content and hardness on the cold cracking in high strength weld metal were investigated. The diffusible hydrogen contents were influenced by welding parameters such as the voltage and contact tip-to-work distance (CTWD). The diffusible hydrogen content increased with an increase in voltage. However, it was decreased with an increase in CTWD. CTWD also influenced the weld metal hardness,especially when the wire used had a higher strength than the base metal. This showed that weld metal hardness had a more powerful effect on weld metal cold cracking than the diffusible hydrogen content in this experiment.

A New Quantification Method of Rock Joint Roughness (II) - Roughness classification and strength equation - (암석 절리면 거칠기의 정량화에 대한 연구(II) - 거칠기의 구분과 강도식의 제안 -)

  • Hong, Eun-Soo;Cho, Gye-Chun;Kwon, Tae-Hyuk;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.183-196
    • /
    • 2006
  • Rock joint roughness obtained from the camera-type 3D scanner was classified into waviness and unevenness. The classification criteria were established in the previous study; digital filtering was used to distinguish one from another. The classified and original profiles were used to produce metal moulds. For accurate machining of the moulds, the WEDM(Wire-cut Electric Discharge Machining) was adopted. Specimens were cast using high strength gypsum, and joint shear tests were performed by varying normal stress from low value to high one. Roughness mobilization characteristics depending on the asperity scale and the applied normal stress were investigated. A new equation was proposed to predict shear strength of rock joint, which can consider the characteristics of roughness mobilization and roughness parameters. The roughness quantification composed of waviness and unevenness was found to be a useful method to predict the joint shear strength.

  • PDF

Cold Cracking Susceptibility in Weld Metal of High Strength-Toughness Steel (고강도 고인성강 용접금속의 저온균열 감수성에 관한 연구)

  • 이종봉;안상곤;안영호;김영우
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.46-54
    • /
    • 1995
  • The cold cracking susceptibility of a variety of weld metals deposited by GMAW with several kinds of commercial solid wires for high strength-toughness steel was investigated. G-BOP test and LB-TRC test were carried out to study the effects of preheat, chemical composition and hydrogen level on the weld metal cold cracking. The results obtained are as follows. 1) 10% CPT obtained by G-BOP test was the most valuable criteria for evaluating the cold cracking susceptibility of weld metals compared with percentage of cracking at room temperature and crack free temperature, and it had good correlation with the results of LB-TRC test. 2) Cold cracking susceptibility of weld metals was high in the row of MG100A, MG100C, MG100D and MG100B. Welds deposited with MG130 and MG80 showed similar icidents of cracking with MG100C and MG100B respectively, even though their strength levels were different. 3) Diffusible hydrogen level in weld metals which has good relation with hydrogen content in wire itself was the most critical factor for controlling the cold cracking susceptibility of weld metal.

  • PDF

Performance Evaluation of High-strength Rockfall Net on Field Test (현장 테스트를 통한 고강도 선제 포획망 성능 테스트)

  • Hyunwoo Jin;Sanghoon Seo;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2023
  • Although standards related to falling stone facilities are established in Korea, the absorption energy of the rockfall prevention net is evaluated from the passage of rockfall and destruction of the rockfall prevention net on field test. The existing PVC coating net does not sufficiently suppress the rockfall load and tears frequently occur, and a high-strength wire rockfall net was developed to prevent. In this study, the performance was analyzed through field tests of the existing PVC coating net and the developed high-strength rockfall net (1,000 MPa, 2,000 MPa).

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

Analysis of Copper clad steel wire in the drawing process using FE method (유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석)

  • Kim H.S.;Jo H.;Jo H. H.;Kim D.K.;Kim B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

Compressive Characteristics of New Wire-woven Cellular Metal (새로운 와이어 직조 다공질 금속의 압축 특성)

  • Ko, Gyeong-Deuk;Lee, Ki-Won;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1659-1666
    • /
    • 2010
  • In this study, a new type of wire-woven cellular metal named WBD(wire-woven bulk diamond) was developed. Like WBK(wire-woven bulk Kagome), WBD is composed of helically formed wires; WBK was introduced a few years ago, and its mechanical, thermal properties, and engineering applications have been extensively investigated. The number of wires that pass by one another at each cross point in WBD is four, whereas that in WBK is three. The mechanical behavior of WBD subjected to compression was investigated and the results were compared to those for WBK. For a given slenderness ratio the density and yield strength of WBD were about twice as high as those for WBK, but elastic stiffness of WBD was not that higher than that for WBK.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

Bond Characteristics of Ultra High Performance Concrete (초고성능 콘크리트(UHPC)의 부착특성에 관한 연구)

  • Kook, Kyung-Hun;Shin, Hyun-Oh;Kwahk, Im-Jong;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.753-760
    • /
    • 2010
  • Ultra high performance concrete (UHPC), is characterized by its high compressive strength and advanced tensile behavior that is much superior to those of conventional concrete. In order to apply this new material in practice, the bond characteristics of UHPC were evaluated in this study. Pull-out tests between UHPC and deformed steel rebar were carried out according to the modified RILEM test method, and were verified by finite element analysis. From the test results showed that UHPC presents 5 to 10 times higher bond strength compared to normal strength concrete, this study suggested remarkably reduced development length and concrete cover comparing to existing specifications. The test results of 700 MPa high strength steel rebar demonstrated the applicability of high strength steel to UHPC. In addition, the transfer length measurements of seven-wire strand in UHPC specimens indicated that the transfer length limit set by the current design code is very conservative for UHPC.