• Title/Summary/Keyword: High-strength wire

Search Result 179, Processing Time 0.026 seconds

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.

Early Age Behavior of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Plain Concrete Pavement (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 초기거동 평가)

  • Ryu, Sung-Woo;Nam, Jung-Hee;Kim, Ki-Heun;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • Thin bonded continuously reinforced concrete overlay(CRCO) was constructed on He existing jointed plain concrete pavement(HCP) surface at Seo-Hae-Ahn express highway in South Korea in order to evaluate its applicability and performance. Two sections of road were considered for this evaluation. In the first section, the concrete overlayer was placed and cut down to the existing layer to form transverse joints while CRCO was constructed on top of the existing layer in the second section. Early strength concrete(Type III) was utilized for both overlay sections. The depth of milling and the thickness of overlaid layer were 5 cm and 10 cm, respectively. Several vibrating wire gauges(VWG) were installed to evaluate the performance of CRCO with respect to curling, delamination, and crack propagation. As a result of the strength test, it was found that strength of the material reaches the design criteria within 1-3 days. Analysis with vibrating wire gauge(VWG) showed CRCO effectively restricts joint movement. High adhesive strength also was observed from the material regardless of length of aging. Meanwhile, transverse cracks were observed on the middle of the section where JPCP overlay was applied whereas arbitrarily cracks in transverse direction were observed on the section where CRCP was applied.

  • PDF

An Experimental Study on the Structural Performance of Slab Joint Using Welded Wire Fabric (용접철망을 사용한 슬래브접합부의 구조성능에 관한 실험적 연구)

  • Yoon, Young-Ho;Yang, Ji-Soo;Kim, Suk-Jung;Chung, Lan;Yang, Young-Sung;Chung, Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.291-300
    • /
    • 1994
  • The influence of elevated temperatures on the mechanical properties of concrete is important for fire-resistance studies and also for understanding the behavior of containment vessel, such as nuclear reactor pressure vessels, during service and ultimate condition. The present study is to clarify the damage/deterioration of concrete structures that are subjected to high temperature exposure. To this end, comprehensive experiments are conducted. The major test variables are the peak temperatures, rate of temperature increase, and sustained duration at peak temperature. The results include weight loss residual compressive strength and stress-strain curve. From those results, residua compressive strength formula and stress-strain relationship are proposed.

  • PDF

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

Sport impact on the strength of the nanoscale protein tissues under the thermal condition

  • Xin, Fang;Mengqian, Hou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.561-574
    • /
    • 2022
  • The stability of protein tissues and protein fibers in the human muscle is investigated in the presented paper. The protein fibers are modeled via tube structures embedded in others proteins fibers like the elastic substrate. Physical sport and physical exercise play an important role in the stability of synthesis and strength of the protein tissues. In physical exercise, the temperature of the body increases, and this temperature change impacts the stability of the protein tissues, which is the aim of the current study. The mathematical simulation of the protein tissues is done based on the mechanical sciences, and the protein fibers are modeled via wire structures according to the high-order theory beams. The thermal stress due to the conditions of the sport is applied to the nanoscale protein fibers, then the stability regarding the frequency analysis is investigated. Finally, the impact of temperature change, physical exercise, and small-scale parameters on the stability of the protein tissues are examined in detail.

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

The ]Relationship between Strain Ageing And Delamination Occurrence of Drawn Steel Wires (신선가공 고탄소 강선에서의 시효현상과 딜라미네이션 발생간의 상관관계 고찰)

  • Lee, J.W.;Lee, J.C.;Gang, U.G.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.231-234
    • /
    • 2009
  • The effects of annealing temperature and time on mechanical properties and microstructures were already investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since Between increase of tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the increase of drawing strain by lower annealing temperature caused the between higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

Evaluation in Performance of High Voltage Cable for BLU of TFT-LCD by Improvement for Material and Manufactured Process (TFT-LCD BLU용 고압 케이블의 재료특성 및 제조공정 개선을 통한 성능 향상)

  • Chung, Jin-Do;Kim, Jae-Hoon;Koo, Kyung-Wan;Hwang, Seung-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.495-498
    • /
    • 2009
  • To improve the efficiency of the high voltage cable for BLU(backlight unit) of TFT-LCD(Thin Film Transistor-Liquid Crystal Display), the analysis for the trial products(UL3239, UL3633) is conducted by using SEM(scanning electron microscope) and EDX(Energy Dispersive X-ray Spectroscopy). The result that it is possible to accumulate the know-how to about stranding pitch through effective improvement of stranding process. The troubles which are the badness of withstanding voltage and tensile strength etc. are solved by development of excellent material. Furthermore, phenomenon of conductor unfasten in the harness work is solved by improvement of the stranding wire process.

A New Technology for Strengthening Surface of Forging Die

  • Xin Lu;Zhongde Liu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.189-192
    • /
    • 2003
  • The Electro-thermal Explosion Coating (EEC) technique is a new surface treatment technology emerged in recent years. It uses an electrical discharge (with very high voltage from 5 to 30 kV or more) to produce a pulse current with large density inside the material to be deposited, the metal wire undergo the heating, melting, vaporization, ionization and explosion processes in a very short time (from tens ns to several hundreds ${\mu}s$), and the melted droplets shoot at the substrate with a very high velocity (3000 - 4500 m/s), so that the coating materials can be deposited on the surface of the substrate. Coatings with nano-size grains or ultra- fine grains can be formed because of rapid solidification (cooling rate up to $10^6-10^9\;k/s$). Surface of the substrate (about $1-5{\mu}m$ in depth) can be melted rapidly and coatings with very high bonding strength can be obtained.

  • PDF