• 제목/요약/키워드: High-strength

Search Result 13,496, Processing Time 0.044 seconds

Determination of Removal Time of the Forms with the Strength Development of High Strength Concrete at Early Age (고강도 콘크리트의 초기강도 발현에 따른 거푸집 탈형시기의 결정)

  • 김은호;김영진;한민철;신병철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.99-102
    • /
    • 2003
  • This study discusses the determination of removal time of forms with early strength development in high strength concrete. According to the results, as W/B increases by 10%, the setting time is shortened by about 2 hours. The time when compressive strength of 8 MPa is gained is about 20 hours. Bond strength between form and concrete is highest around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting, but after that, it is little. The rebound value of P type schmidt hammer is measured faster by 2-3 hours than compressive strength. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 34

  • PDF

Compressive Strength Control of High Strength Concrete Structure Using Samples with Isolated Junction Test (고강도콘크리트 벽체부재에 접합분리 시험체를 활용한 강도관리에 관한 연구)

  • Ki, Jun-Do;Kim, Hak-Young;Kim, Kwang-Ki;Paik, Min Su;Lim, Nam Gi;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.47-50
    • /
    • 2009
  • The existing techniques used to estimate and manage the compressive strength of concrete do not include the environmental factors that influence the development of compressive strength and the compressive strength itself. Thus, it is necessary to develop a reasonable yet simple way to measure the compressive strength of concrete structures at construction sites by considering concrete's mechanical properties and curing environment. This study was conducted to propose an acrylic form and a junction isolation mold with crack-inducing boards that uses non-destructive methods to create and collect concrete test samples that are cured in the same condition as the actual concrete structures. junction isolation molds were used in high-strength and super high-strength concrete to evaluate the reliability of compressive strength evaluation on the test sample. The following were the findings of this study:

  • PDF

Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment (고강도 철근을 활용한 휨 부재의 연성거동에 관한 연구)

  • Kwon, Soon-Beom;Yoon, Young-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.119-126
    • /
    • 2002
  • This paper presents the appropriateness for using high strength reinforcement according to the use of high strength concrete. Nine flexural tests were conducted on full-scale beam specimens according to the concrete strength, reinforcement strength and reinforcement ratio as main variable. The structural behavior was analyzed due to the flexural strength, stress-strain curve, deflections at yielding and fracture point, crack appearance and ductility factor. The member with high-strength reinforcements showed large deflection at yielding point and this was analyzed as a main cause to decrease the ductility factor. Structural behavior after yielding point, however, showed similarity to behavior of members with normal strength reinforcements of same stiffness. It was found that in the case of using reinforcements of $5500kgf/cm^2$ strength, the combination with concrete of $800kgf/cm^2$ strength demonstrated the great appropriateness which can increase the flexural capacity without any reduction of maximum reinforcement ratio.

A Study on the Effect of Admixture Types and Replacement Ratio on Hydration Heat Reduction of High-Strength Concrete (고강도 콘크리트의 수화열 저감에 미치는 혼화재 종류 및 대체율의 영향에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Oh, Si-Duk;Kim, Yong-Ro;Lee, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.145-150
    • /
    • 2002
  • The hydration of cement paste occurs when the cement is miked with water. During the hydration, hydration heat causes the thermal stress depending on the site of concrete and the cement content. Especially in the high-strength concrete, we must give care to the concrete due to its large cement content. In this study conduction calorimeter and concrete insulation hydration heat meter were used to investigation the hydration heat characteristics of cement and concrete. To reduce hydration heat of high-strength concrete, several types of replacement of fly-ash and blast-furnace slag powder were used in this experiment. As a result of this study, it was found that hydration heat of high-strength concrete was reduced by replacement of fly-ash and blast-furnace slag powder. In case of high-strength concrete using blast-furnace slag powder, the max-heat arrival time was delayed but an effect of heat reduction was lower than a case of high-strength concrete using fly-ash, because it was considered that the heat-dependence property of blast-furnace slag powder was higher than that of fly-ash.

Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints

  • Yang, Xu;Lei, Honggang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.571-579
    • /
    • 2017
  • The grid structure with bolt-sphere joints is widely adopted by industrial plants with suspending crane. The alternating reciprocating action of the suspending crane will cause fatigue problems of the grid structure with bolt-sphere joints with respect to the rod, the cone, the sealing plate, the bolt ball and the high strength bolt; while the fatigue of the high strength bolt is the key issue of fatigue failure. Based on efficient and smooth loading equipment with the AMSLER fatigue testing machine, this paper conducted a constant amplitude fatigue test on 18 M20 and 14 M30 high strength bolts with 40Cr material, and obtained 19 valid failure points, 9 unspoiled points with more than 2 million cycles, and 4 abnormal failure points. In addition, it established the constant amplitude fatigue design method, ${[{\Delta}{\sigma}]_{{2{\times}10}}{^6=58.91MPa}$, and analyzed the stress concentration and the fatigue fracture of high strength bolts. It can be explained that the geometrical stress concentration of high-strength bolt caused by spiral burr is severe.

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

Fatigue Life Analysis of Spot Weldment of Cold Rolled and High Strength Steel Using FEM (FEM에 의한 일반냉연강판 및 고장력강판의 점용접 피로수명해석)

  • Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong;Kim, Hong-Gun;Kim, Kyu-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2008
  • Cold rolled and high strength steel were used for vehicle bodys to satisfy environmental regulation and improve fuel ratio. This paper presented a method far determining the fatigue life of cold rolled steel sheet EZNCEN and high strength steel sheet HS40R spot weldment used in vehicles. We can estimate the fatigue life of the spot weldments from the MSC/FATIGUE using the finite element method. The maximum load is found in the nugget part of both surfaces. The cold rolled steel and the high strength steel showed the maximum stress 746MPa and 730MPa in the effective nugget part when the weld current was 8KA and 7KA, respectively. Also the some weld current of the cold rolled steel and high strength steel is applied, the fatigue life of high strength steel is obtained about four times longer than the cold rolled steel.

Flexural behavior of ultra high performance concrete beams reinforced with high strength steel

  • Wang, Jun-Yan;Gu, Jin-Ben;Liu, Chao;Huang, Yu-Hao;Xiao, Ru-Cheng;Ma, Biao
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.539-550
    • /
    • 2022
  • A detailed experimental program was conducted to investigate the flexural behavior of ultra high performance concrete (UHPC) beams reinforced with high strength steel (HSS) rebars with a specified yield strength of 600 MPa via direct tensile test and monotonic four-point bending test. First, two sets of direct tensile test specimens, with the same reinforcement ratio but different yield strength of reinforcement, were fabricated and tested. Subsequently, six simply supported beams, including two plain UHPC beams and four reinforced UHPC beams, were prepared and tested under four-point bending load. The results showed that the balanced-reinforced UHPC beams reinforced with HSS rebars could improve the ultimate load-bearing capacity, deformation capacity, ductility properties, etc. more effectively owing to interaction between high strength of HSS rebar and strain-hardening characteristic of UHPC. In addition, the UHPC with steel rebars kept strain compatibility prior to the yielding of the steel rebar, further satisfied the plane-section assumption. Most importantly, the crack pattern of the UHPC beam reinforced with HSS rebars was prone to transform from single main crack failure corresponding to the normal-strength steel, to multiple main cracks failure under the condition of balanced-reinforced failure, which validated by the conclusion of direct tensile tests cooperated with acoustic emission (AE) source locating technique as well.

An Experimental Study on the Seismic Behavior of Solid RC Piers Using High Strength Concrete and High Strength Rebars (고강도 콘크리트 및 고강도 철근을 사용한 중실교각의 내진거동에 관한 실험적 연구)

  • Oh Byung-Hwan;Cho Keun-Ho;Park Dae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to investigate the structural behavior of RC Piers using high strength concrete and high strength rebars. The high strength concrete offers many advantages such as enhanced mechanical performance and durability, in addition to member size reduction. The high strength rebars are used here to reduce the amount of rebars, which facilitates the placement of concrete and labor works. Five RC piers were tested under a constant axial load and a cyclically reversed horizontal load. The seismic design of piers were implemented, according to the current Korean Bridge Design Code. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 구성인자가 압축강도에 미치는 영향)

  • Park Jung-Jun;Koh Kyung-Taek;Kang Su-Tae;Kim Sung-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.35-41
    • /
    • 2005
  • Recently, various fiber reinforced cementitious composites are used in order to solve problems of concrete as the brittleness breaking. Especially, in U.S.A., Europe, and Japan, ultra-high strength steel fiber reinforced cementitious composites(ultra-high strength SFRCC) with compressive strength in excess of 100 MPa were developed. However few studies have been investigated on the high-strength SFRCC in Korea. Therefore, in this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-binder ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.20, we could make ultra-high strength SFRCC with compressive strength of 180MPa through using of silica fume, quartz sand with below 0.5mm filling powder and steel fiber.