• 제목/요약/키워드: High-strain-rate deformation

검색결과 269건 처리시간 0.025초

SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동 (Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading)

  • 이종원;이억섭;황시원;김성현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동 (Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading)

  • 이억섭;이종원;김경준
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

$SiC_p/Al-Si$ 복합재료의 고온변형 특성 (High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites)

  • 전정식;고병철;김명호;유연철
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동 (Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys)

  • 홍민호;지예빈;윤지민;김권후
    • 열처리공학회지
    • /
    • 제37권2호
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

변형속도에 따른 M1 마그네슘 합금의 고온변형 중 미세조직 형성 거동 (Effect of Strain Rate on Microstructure Formation Behavior of M1 Magnesium Alloy During High-temperature Deformation)

  • 이규정;김권후
    • 열처리공학회지
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2019
  • In this study, microstructure evolution and crystallographic orientation are investigated under various deformation conditions in M1 magnesium alloy. M1 magnesium ingot was rolled at 673 K with the rolling reduction of 30%. The compression test specimens were machined out from rolled plate, and then the specimens were annealed at 823 K for 1h. Uniaxial compression tests were conducted at 723 K and under the strain rate ranging from $5.0{\times}10^{-4}s^{-1}$ to $5.0{\times}10^{-2}s^{-1}$ up to a true strain of -1.0. For observation of crystal orientation distribution, EBSD measurement was performed. Occurrence of the dynamic recrystallization and grain boundary migration were confirmed in all case of the specimens. The distribution of the grains is not uniformed in the experimental conditions.

Effects of Mg and Cu Additions on Superplastic Behavior in MA Aluminum Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.435-439
    • /
    • 2018
  • MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range($10^{-4}-10^3/s$). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(${\varepsilon}_f$ < ~50%) in high temperature(748 K) tensile deformation at high strain rates(${\acute{\varepsilon}}=1-10^2/s$). ${\varepsilon}_f$ in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(${\varepsilon}_f={\sim}140%$ at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(${\varepsilon}_f$ > 500%). Warm-rolling(at 393-492 K) tends to raise ${\varepsilon}_f$. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates (${\acute{\varepsilon}}$< ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when ${\varepsilon}_f$ is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.

${YBa_2}{Cu_3}{O_{7-x}}$초전도체의 고온변형특성 (High temperature deformation characteristics ${YBa_2}{Cu_3}{O_{7-x}}$ superconductor)

  • 김병철;장호정;송진태
    • 한국재료학회지
    • /
    • 제4권7호
    • /
    • pp.828-836
    • /
    • 1994
  • YBCO산화물초전도체의 고온변형 특성을 조사하기 위하여 $890^{\circ}C$ ~ $930^{\circ}C$의 온도범위에서 $1.0 x 10^{-5}s^{-1}\sim 1.0^{-4}s^{-1}$의초기변형속도로 압축시험을 수행하였다. 변형온도가 증가함에 따라 또한 초기변형속도가 감소함에 따라 flow stress는 감소하였다. 변형률속도 민감지수는 0.41-0.46이었다. 이는 초소성 변형이 일어났음을 보여준다. 초소성변형에 대한 활성화 에너지는 약 500 ~ 580KJ/mol이었으며 Ag첨가량이 증가할수록 활성화에너지는 감소하였다. 초소성변형된 시편들의 미세조직 관찰결과 변형중에 결정립 성장이 일어났으며 Ag양이 증가함에 따라 이러한 현상을 뚜렷하였다. 변형후 결정립 형태는 등축상을 유지하였다. 이러한 결과로 볼때, YBCO 초전도체의고온변형기구는 확산을 동반한 결정립계 미끄러짐으로써 그 비율은 전 변형량중 약 65%정도였다.

  • PDF

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

중간 변형률속도용 낙추식 충격 인장시험 장치의 신뢰성 확보 및 탄소강의 동적변형거동 평가 (Reliability Assessment of Impact Tensile Testing Apparatus using a Drop-bar Striker for Intermediate Strain-rate Range and Evaluation of Dynamic Deformation Behaviors for a Carbon Steel)

  • 배경오;김대웅;신형섭;박이주;김형원
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.573-579
    • /
    • 2016
  • 충격하중을 받는 재료의 변형거동에 관한 연구는 공학 및 산업의 다양한 분야에서 관심 받고 있으며, 이들 기계/구조물 부재의 변형 및 파괴거동의 다수는 중간 변형률속도 영역에 해당하는 것으로 알려져 있다. 따라서 이러한 변형률속도역에서 동적변형거동을 고려하는 것이 설계의 필수조건이 되었다. 이들 영역은 준정적과 SHPB 시험장치를 이용하는 고 변형률속도의 중간 영역에 위치하고 있어서, 종래의 적당한 시험장치를 이용하여 중 변형률속도를 얻는 것이 용이하지 않았다. 따라서 중간 변형률속도역에서 재료의 변형 및 파괴거동에 관한 유용한 데이터의 보고는 제한적이다. 본 연구에서는 이러한 문제를 해결하기 위해, 구축한 낙추식 충격 인장시험 장치의 신뢰성을 확보하였고, 이를 사용하여 탄소강의 중 변형률속도역에서 동적거동을 평가하였다.