• Title/Summary/Keyword: High-strain

Search Result 5,007, Processing Time 0.048 seconds

Determination of Dynamic Tensile Behavior of Al5052-H32 using SHPB Technique (SHPB 테크닉을 이용한 Al5052-H32의 동적 인장 거동 규명)

  • 이억섭;김면수;백준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.790-794
    • /
    • 1997
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to those mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental behavior under high strain rate loading condition In this paper, dynamic deformation behaviors of A15052-H32 under high strain rate tensile loading are determined using the SHPB technique.

  • PDF

Fabrication of Tantalum Nitride Thin-Film as High-temperature Strain Gauges (고온 스트레인 게이지용 질화탄탈박막의 제작)

  • 김재민;최성규;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.97-100
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4∼16 %)N$_2$). These films were annealed for 1 hour in 2x10$\^$-6/ Torr vaccum furnace range 500∼1000$^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition(900$^{\circ}C$, 1 hr.) in 8% N$_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, $\rho$=768.93 ${\mu}$Ω cm, a low temperature coefficient of resistance, TCR=-84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12.

  • PDF

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Strain-rate Effect on Tensile Properties of High-nitrogen Austenitic Stainless Steel (고질소 오스테나이트계 스테인리스강의 인장물성에 미치는 변형속도의 영향)

  • S. H. Lee;D. W. Kim;Y. G. Kim;J.-H. Kang
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.322-329
    • /
    • 2024
  • Because a high strain rate suppresses cross slip and delays dynamic recovery in the alloys with a face-centered cubic (FCC) structure, it is generally accepted that the influence of strain rate on strain hardening rate and tensile strength is greater than that on the yield strength of FCC alloys. The present study examined the tensile behavior of an austenitic stainless steel exhibiting an FCC structure, and revealed that the increment in yield strength was greater than that in tensile strength as the strain rate increased from 5.21×10-5s-1 to 4.17×10-1s-1. This indicated that the strain hardening rate was reduced by increasing the strain rate, which was inconsistent with the conventional explanation. Adiabatic heating was detected at high strain rates from 5.21×10-5s-1, and the resulting temperature increase could elevate stacking fault energy. The tendency for sip planarity was investigated by applying the Ludwigson model to the tensile curves, which suggested that higher stacking fault energy due to adiabatic heating could accelerate cross slip and dynamic recovery, thereby reducing the strain hardening rate.

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

Fabrication of Tantalum Nitride Thin-Film as High-temperature Strain Gauges (고온 스트레인 게이지용 질화탄탈박막의 제작)

  • 최성규;나경일;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1022-1025
    • /
    • 2001
  • This paper presents the characteristics of TaN thin-film as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4∼20%)N$_2$). The electrical and mechanical characteristics of these films investigated with the thickness range 1650∼1870${\AA}$ and room temperature resistivities in the range 178.3 ${\mu}$$\Omega$cm to 3175.7 ${\mu}$$\Omega$cm. The TaN thin-film strain gauge deposited in Ar-(20%)N$_2$atmosphere is obtained a temperature coefficient of resistance(TCR), 0∼-1357 ppm/$^{\circ}C$ in the temperature range 25∼275$^{\circ}C$ and a high temporal stability with a longitudinal gauge factor, 2.92∼3.47. Because of their high resistivity, low TCR and linear gauge factor, these cermet thin-film may allow high-temperature strain gauges miniaturization.

  • PDF

High strain rate tensile test of sheet metals with a new tension split Hopkinson bar (박판의 고변형률에서의 기계적특성을 얻기위한 Tension Split Hopkinson bar의 제작 및 실험)

  • Jung, Dong-Taek;Huh, Hoon;Kang, Woo-Jong;Cho, Sang-Soon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.106-110
    • /
    • 1997
  • A split Hopkinson bar has been used for obtaining material properties in high strain rate state, In this paper, the apparatus was modified to obtain the high strain rate properties of sheet metal for an autobody. From the experiments with the new apparatus, the material properties of SPCEN in the high strain rate state have been acquired and compared with quasi-static experimental results.

  • PDF

Deformation behavior of the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel under different strain rate conditions (Fe-18Cr-14Mn-4Ni-0.9N 고질소 내식강의 고온 석출과 변형률 속도에 따른 변형특성 연구)

  • Nam, S.M.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.421-424
    • /
    • 2006
  • High nitrogen steels (HNS) exhibit both high strength and ductility during tensile deformation. In the present study the Fe-18Cr-14Mn-4Ni-0.9N high nitrogen steel was heat treated at $1000^{\circ}C$ and $1100^{\circ}C$ to produce $Cr_2N$ precipitates in austenite matrix and full austenite microstructures, respectively. Tensile tests of the heat treated specimens were performed at two different strain rates of 0.05/sec and 0.00005/sec. Each tensile curve of the specimens could be well characterized by the the modified Ludwik equation. Plastic deformation of the steel was adequately represented by the four parameters of the modified Ludwik equation. At 0.05/s strain rate, the specimen with the $Cr_2N$ precipitate exhibited higher strength than the full austenite specimen, while the full austenite specimen showed better mechanical properties at 0.00005/s strain rate. It was found that the $Cr_2N$ precipitates influences deformation behavior of the high nitrogen steel significantly.

  • PDF

Creep Properties of Ultra High Strength Concrete at High Temperature under Loading (재하와 가열을 받은 초고강도 콘크리트의 크리프 특성)

  • Lee, Young-Wook;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.286-287
    • /
    • 2014
  • Performance degradation of Ultra High Strength Concrete occurs more than that of normal strength concrete at high temperature. Thus, strain of concrete subjected to high temperature and loading is one of the core assessment items for evaluating performance of structures. Therefore, in this study, creep of ultra high strength concrete subjected to various temperature conditions and 25%, 40% loading was evaluated. As the results, Creep strain increased with increase of temperature and loading. Creep strain of concrete at high temperature is influenced by loading.

  • PDF