• Title/Summary/Keyword: High-speed rail vehicle

Search Result 146, Processing Time 0.031 seconds

Structural Strength Analysis and Static Load Test of a Wheelset of Korean High Speed Rail for Measuring Whee/Rail Force (한국형 고속철도차량의 차륜/궤도 작용력 측정을 위한 윤축의 구조강도 해석 및 정하중 시험)

  • 전응식;함영삼;허현무;강부병
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.898-903
    • /
    • 2002
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more inportant in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static load test.

  • PDF

Testing method analysis for performance verification in Light Rail Transit signalling system (LRT 신호시스템에서 성능검증을 위한 시험방법 분석)

  • Cho, B.K.;Hwang, H.C.;Lee, H.Y.;Ryu, S.H.
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1722-1728
    • /
    • 2007
  • This study analysed testing method for performance verification in the phase of signalling system development for application in the Light Rail Transit(LRT). The main focus in this study therefore includes development of vehicle location detection system by first GPS and analysis of performance verification method by field testing. The comprehensive testing method has been analysed for the signalling system for LRT high speed operation. The signalling system for LRT high speed operation deals with vehicle location identification through vehicle location information using the second GPS and decision for whether the high speed proceed signal and departure inhibition output is feasible or not and for signalling output to the corresponding vehicle.

  • PDF

Development of fundamental technology for dynamic analysis of the high speed EMU (Electric Multiple Unit) (동력분산형 고속철도 주행성능 동역학 해석을 위한 기반기술 개발)

  • Yoon, Ji-Won;Park, Tae-Won;Jun, Kab-Jin;Park, Sung-Moon;Kim, Jung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.380-386
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from that of previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest all of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In the paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper dynamic models including air-suspension system, wheel-rail, bogie and car-body is developed according to the vehicle simulation scenario. The basic platform for the development of dynamic solver is prepared using nodal, modal coordinate system and wheel-rail contact module. Operating scenario is prepared using commercial dynamic analysis program and used for development of dynamic model, which contains many parts such as carbodies, bogies and suspension systems. Furthermore, international safety standard is applied for final verification of the system. Finally, the reliability of the dynamic model will be verified with test results in the further researches. This research will propose a better solution when test results shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

A Study on the Performance Elevation Methods of Next Generation Railway Freight Vehicles (한국형 고속열차를 이용한 고속선-기존선 연결구간의 속도향상 가능성에 관한 연구)

  • Ham Y.S.;Hong J.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.12-15
    • /
    • 2005
  • In April 1, 2004, age of high-speed railway was opened to korea railroad. The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail farce, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, examined speed elevation possibility use the korean style high speed railway vehicle for reduce the running time of high-speed railway between high speed line and conventional line.

  • PDF

Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis (동적 민감도 해석을 이용한 판토그래프의 동특성 개선)

  • Kim, Jin-Woo;Park, Tong-Jin;Wang, Young-Yong;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

On a Simplified Measurement of Rail Irregularity by Axle-box Accelerometers (축상 진동가속도계를 이용한 궤도불규칙의 간이검측에 관한 연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.989-995
    • /
    • 2010
  • This paper is focused on a simplified measurement of rail irregularity by some axle-box accelerometers for high-speed rail condition monitoring with in-service high-speed trains. Generally, the rail condition monitoring has been done by a special railway inspection vehicle with a 10m versine method. But, the monitoring method needs some expensive measurement system, and have been performed only at night due to its speed limit. In this research, a simplified measurement of rail irregularity using axle-box accelerometers is proposed to monitor the rail condition with in-service high-speed trains. The acceleration is measured by using two accelerometers on a axle-box, and stored in an on-board data acquisition system. The displacement is estimated from the acceleration data by a combination of Kalman filter and the frequency selective filter. The estimated results are compared with the measurement from a laser rail inspection system which is near the axle-box. From the comparison, the proposed method shows promise as a tool for the simplified measurement of rail irregularity at high-speed.

  • PDF

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

A Modeling and Contact Force Analysis of the Catenary-pantograph System for a High-speed Rail Vehicle (고속 전철용 가선-팬터그래프 시스템의 모델링 및 접촉력 해석)

  • 김진우;박인기;장진희;왕영용;한창수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.474-483
    • /
    • 2003
  • In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to high-speed trains are investigated. One of the most important issues accompanied by increasing the speed of high-speed rail is stabilization of current collection. To stabilize current collection, it is necessary the contact force between the catenary and the pantograph to be kept continuous without loss of contact. The analytical model of a catenary and a pantograph is constructed to simulate the behavior of an actual system. The analysis of the catenary based on the Finite Element Method (FEM) is performed to develop a catenary model suitable for high speed operation. The reliability of the models is verified by the comparison of the excitation test with Fast Fourier Transform (FFT) data of the actual system. The static deflection of the catenary, stiffness variation in contact lines, dynamic response of the catenary undergoing constant moving load, contact force, and each state of the pantograph model were calculated. It is confirmed that a catenary and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

Analyzing the Difference between the Stated Preference and the Revealed Preference before/after the High-speed Rail Service in Korea

  • Lee, Jang-Ho
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2014
  • The Korean high-speed rail (HSR) began its commercial service in 2004. This service has been created significant changes in the system of intercity passenger travels of Korea. However, the actual ridership was approximately half of the estimated one in the planning stage. In this background, this paper presents the difference between the stated preference (SP) before the HSR service and the revealed preference (RP) after it using the intercity travel mode choice models. Several meaningful differences are found in terms of the factors affecting the travel mode choice, the estimation results of model, the monetary values of time, and elasticities. While the access/egress travel time of high-speed rail is less important than in-vehicle travel time in the SP sample, they have same weight in the RP sample. Also the RP models show that the probability of choosing HSR can be decreased by the increase of the number of vehicles in household contrary to the results from the SP models. The monetary values of travel time are relatively high and the direct and cross elasticities in response to changes in level-of-service of HSR are relatively low in the RP sample. This Korean case is expected to offer referable material for preparing high-speed rail services in other countries by showing the difference between the SP and RP before/after the actual service, identifying the importance of access/egress travel time and lower direct elasticities of HSR demand.

Critical speed analysis of the High-Speed EMU (분산형 고속전철의 임계속도 해석)

  • Shin, Bum-Sik;Lee, Seung-Il;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.973-978
    • /
    • 2008
  • This study concerned on the critical speed due to hunting and snake motion train to ensure the stability. First, the critical speed was calculated by using a numerical model, and calculated the critical speed of the vehicle through the simulation with the use of ADAMS/RAII. Also, the snake motion was confirmed through a modal analysis and running simulation. The calculated results, show that the rail irregularity becomes the influential factors of the stability since it is the direct source of excitation of the vehicle.

  • PDF