• Title/Summary/Keyword: High-speed maglev train

Search Result 37, Processing Time 0.027 seconds

Bi-directional information transmission in MAGLEV (자기부상열차에서의 양방향 정보전송)

  • Ahn, Sang-Kwon;Park, Jeong-Soo;Chang, Dae-Sik;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.434-436
    • /
    • 1996
  • This paper deals with the signal communication system for MAGLEV which is indispensible to train control with safety and high speed operation. Therefore it is necessary for signal system to ensure high speed transmission. massive transmission, low error rate, and reliability of information. And the ensured information should be transmitted between ground and on-board for safety and high speed operation. For these reasons, we have considered the guaranteed reliability by applying FSK method and HDLC protocol. Because HDLC has the advantages of high efficiency, high reliability, low bit rate, and bit transparency. HDLC is the appropriate method for data transmission in MAGLEV.

  • PDF

Learning an Application of Superconductivity in Modern Mass Transportation

  • Ping, Jin;Hui, Liu;Li, Wan
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.148-151
    • /
    • 2012
  • Applications of superconducting technology in transportation is more straightforward than others, such as magnetic levitation (maglev) trains. A maglev train is of high speed & low power-consumption, environmental friendly and safe, accompanied by some drawbacks. This article will introduce the application of superconducting technology in the urban mass transport system, and the bottleneck of this application.

Real-time speed and position detection of MAGLEV vehicle system (MAGLEV 차량의 실시간 속도 및 위치 검출)

  • Yoon, Y.W.;Park, S.H.;Ham, S.Y.;Sohn, Y.S.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.346-348
    • /
    • 1997
  • This paper presents microprocessor-based real-time speed and position detection by inductive radio loop in new transportation system, such as magnetically levitated train system, rubber tyred train, and linear-motor car. The constant elapsed time method is used in this study for high accurate detection over a wide speed range. And for reliability and safety of the system, it is duplicated and data-bus level comparison is performed by fail-safe comparator.

  • PDF

Dynamic Interaction Analysis between Maglev Train with Airgap Control Algorithm Based on Acceleration Feedback and Guideway (가속도 되먹임 기반 부상공극제어기법을 이용한 자기부상열차-가이드웨이 상호작용 해석)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.193-199
    • /
    • 2016
  • Since the variations of electromagnetic suspension forces of maglev trains have close relations with the acceleration of the levitated bodies, it is basic to control the levitation forces using the measured acceleration of vehicles. In this study, an airgap control algorithm based on acceleration feedback is applied to maglev trains and a dynamic analysis method is developed considering maglev train-guideway interaction. Using the developed method, dynamic behaviors of a maglev train-guideway interaction system are investigated. It is observed from the analysis that the current design guidelines can be satisfied when the proposed airgap control algorithm is employed. Using the contorl algorithm, the current guidelines can be improved and economical maglev railway guideway structures can be designed.

Dynamic Interaction Analysis of Low, Medium and Super-high Speed Maglev and Guideways (열차-교량의 동적 상호작용을 고려한 중·저속 및 초고속 자기부상열차와 가이드웨이의 동특성 해석)

  • Min, Dong-Ju;Jung, Myung-Rag;Lee, Jun-Seok;Kim, Lee-Hyeon;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • The purpose of this study is to examine the dynamic characteristics of low, medium and high speed Maglev trains and guideways through dynamic interaction analysis. The coupled dynamic equations of motion for a vehicle of 10-dof and the associated guideway girders are developed by superposing vibration modes of the girder itself. The controller used in the UTM-01 Maglev vehicle is adopted to control the air gap between the bogie and guideway in this study. The effect of roughness, the guideway deflection-ratio and vehicle speed on the dynamic response of the maglev vehicle and guideway are then investigated using the 4th Runge-Kutta method. From the numerical simulation, it is found that the air gap increases with an increase of vehicle speed and the roughness condition. In particular, the dynamic magnification factor of the guideway girder is small at low and medium speeds, but the factor is noticeable at super-high speeds.

A Study Interior Noise Reduction of a Maglev Train at Low Speed (저속 주행시 자기부상열차의 실내소음저감에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.253-260
    • /
    • 2001
  • A Study of interior noise reduction in the magelv train is presented. Tarin speed of interest is low such that aero-dynamic noise is negligible and power supply system is a dominant noise source. Based on the measurements of interior noise and acceleration levels during running and zero speed conditions, dominant noise sources are identified. After spectra characteristics of noise sources are investigated several noise reducing methods are studied such as STL increasement of floor panels. sealing. and absorption treatment It is found that the most important noise sources are VVVF inverter and SLM in running condition, whereas air conditioner and DC/DC converter are dominant in zero speed. Sine the major noise sources are under the floor complete sealing and high STL of the floor panel are shown to be the most crucial factors in noise reduction After sound absorbing material, which is polyurethan foam of 50 mm thickness, is thickness, is attached to the downward side of the floor in addition to sealing treatment, the interior noise is reduced by 3~4 dB.

  • PDF

A Study on Application for Super Speed Maglev Railway of System Engineering Technology (시스템 엔지니어링 기법의 초고속 자기부상철도 적용에 관한 연구)

  • Han, Young-Jae;Jo, Jung-Min;Lee, Jin-Ho;Kim, Dong-Hyun;Lee, Chul-Ung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • A super speed maglev is a complicated system integrating electric, electronic, mechanic, civil and construction engineering. So, there must be an integrative system to monitor and manage operation requirements and standard features of each subsystem and the interfaces between each technology. As an indispensable part that can ensure whole system performance, a secure interface for each individual subsystem is an important management item of system engineering. By securing the interface performance of each individual subsystem, system failure can be effectively prevented in advance. Based on system engineering techniques, improvement of security and reliability for a super speed maglev is described in this research.

A Study on the Weight-Reduction Design of High-Speed Maglev Carbody made of Aluminum Extrusion and Sandwich Composite Roof (알루미늄 압출재와 샌드위치 복합재 루프를 적용한 초고속 자기부상 열차의 차체 경량화 설계 연구)

  • Kang, SeungGu;Shin, KwangBok;Park, KeeJun;Lee, EunKyu;Yoon, IllRo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1093-1100
    • /
    • 2014
  • The purpose of this paper is to suggest a weight-reduction design method for the hybrid carbody of a high-speed maglev train that uses aluminum extrusion profiles and sandwich composites. A sandwich composite was used on the roof as a secondary member to minimize the weight. In order to assemble the sandwich composite roof and aluminum extrusion side frame of the carbody using welding, a guide aluminum frame located at the four sides of the sandwich composite roof was introduced in this study. The clamping force of this guide aluminum frame was verified by three-point bending test. The structural integrity and crashworthiness of the hybrid carbody of a high-speed maglev train were evaluated and verified according to the Korean Railway Safety Law using a commercial finite element analysis program. The results showed that the hybrid carbody composed of aluminum extrusion frames and a sandwich composite roof was lighter in weight than a carbody made only of aluminum extrusion profiles and had better structural performance.